VERIFIED CELL THERAPY CLINICAL TRIALS IN THE UK | Project summary | Lead institution/
company | Present stage of development | Year current
trial started | Recruitment
target for
current trial | Current trial still actively recruiting | Cell type | Autologous/
Allogeneic | Cell source | Disease area | Indication | Contact | I agree to this data being used in a
publicly available database that
shows clinical trial activity in the
UK cell-based therapy industry | |---|--|--|-------------------------------|--|---|---------------------------------|---------------------------|--------------------------------|-----------------|---|---|--| | Cytovir CMV (cytomegalovirus)
adoptive T cell therapy for CMV
immunity post bone marrow
transplantation from sibling donor
(IMPACT study). T cells derived
from sibling donor providing bone
marrow | Cell Medica | Phase 3 | 2008 | Minimum 70 | Yes | T cell | Allogeneic | Peripheral blood
stem cells | Oncology/ Blood | CMV reactivation
following allogeneic
haematopoietic stem
cell transplantation
(prophylactic) | Karen Hodgkin, Cell Medica
(karen.hodgkin@cellmedica.co.uk) | Yes | | Cytomegalovirus (CMV) vaccination
using adoptive T cell transfer
following haematopoietic stem cell
transplantation (ACE/ASPECT study) | Cell Medica with
Birmingham
University | Phase 2 | 2010 | 42 | Yes | T cell | Allogeneic | Peripheral blood
stem cells | Oncology/ Blood | CMV reactivation
following allogeneic
haematopoietic stem
cell transplantation
(pre-emptive) | Karen Hodgkin, Cell Medica
(karen.hodgkin@cellmedica.co.uk) | Yes | | Adoptive T cell therapy for the reconstitution of immunity to adenovirus (ADV) in paediatric patients following bone marrow transplantation | Cell Medica | Phase 1/2 | 2012 | 15 treated patients | Yes | T cell | Allogeneic | Immune cells | Oncology/ Blood | ADV in paediatric
patients following
bone marrow
transplantation | Karen Hodgkin, Cell Medica
(karen.hodgkin@cellmedica.co.uk) | Yes | | WT1 TCR gene therapy for
leukaemia: a phase I/II safety and
toxicity study (WT1 TCR-001) | University College
London | Phase I/2 | 2012 | 18 | Yes | Transduced T cell | Autologous | Peripheral Blood | Oncology/ Blood | Acute myloid
leukaemia;
chronic myloid
leukaemia | Dr Emma Morris (CI), UCL
e.morris@ucl.ac.uk | Yes | | A Phase II trial to assess the activity of NY-ESO-1 targeted T cells in advanced oesophagogastric cancer. Gene modified T cells expressing an engineered TCR to recognise NY-ESO-1 cancer antigen | The Christie NHS
Foundation Trust,
Manchester, UK
(Treatment centre
and 6 other sites
across EU); Cellular
Therapeutics Ltd,
UK - IMPD
manufacturing | Phase 2. Target
date for trial
completion 2018 | | | | Engineered T cells | Autologous | Peripheral blood | Oncology | Advanced
oesophagogastric
cancer | Prof Robert Hawkins (The Christie NHS
Foundation Trust) / Ryan Guest
(Cellular Therapeutics Ltd) | Yes | | A randomised Phase II study in metastatic melanoma to evaluate the effect of optimised cell production protocols. Gene modified T cells expressing an engineered TCR to recognise NY-ESO-1 cancer antigen | The Christie NHS Foundation Trust, Manchester, UK (Treatment centre and 6 other sites across EU); Cellular Therapeutics Ltd, UK - IMPD manufacturing | Phase 2. Target
date for trial
completion 2018 | | | | Engineered T cells | Autologous | Peripheral blood | Oncology | Advanced melanoma
cancer | Prof Robert Hawkins (The Christie NHS
Foundation Trust) / Ryan Guest
(Cellular Therapeutics Ltd) | Yes | | An open-label study of sipuleucel-T
in European men with metastatic,
castrate resistant prostate cancer | Dendreon | Phase 2 (open in
UK, Austria,
Holland) | 2012 | 45 | Yes | Antigen presenting cells (APCs) | Autologous | Blood | Oncology | Metastatic, castrate
resistant prostate
cancer | Todd Gumbleton, Lead Nurse, Barts
Cancer Institute, Centre for
Experimental Cancer Medicine, Queen
Mary University of London,
Todd.Gumbleton@bartshealth.nhs.uk | Yes | | Patients with high-risk B cell precursor acute lymphoblastic leukaemia are treated with donor-derived EBV-specific cytotoxic T-lymphocytes transduced with the SFGaCD19-CD3C retroviral vector following allogeneic haematopoietic stem cell | University College
London | Phase 1/2 | 2012 | 75 | Yes | CD8 cytotoxic T cell | Allogeneic | Peripheral blood
mononuclear
cells | Oncology | Acute lymphoblastic
leukaemia | Dr Zahid Sattar, University College
London,
(z.sattar@ucl.ac.uk) | Yes | |--|--|--|------|----|-----|----------------------|------------|---|----------|---|---|-----| | A Phase 1 study of adoptive transfer of autologous tumour antigen specific T cells with preconditioning chemotherapy and intravenous IL2 in patients with CD19 positive malignancy. Gene modified T cells expressing an engineered CAR to recognise the CD19 surface antigen | The Christie NHS
Foundation Trust,
Manchester, UK
(Treatment centre);
Cellular
Therapeutics Unit,
University of
Manchester, UK -
IMPD
manufacturing | Phase 1. Target
date for trial
completion 2014 | | | | Engineered T cells | Autologous | Peripheral blood | Oncology | Advanced CD19
positive malignancies | Prof Robert Hawkins (The Christie NHS
Foundation Trust) / Ryan Guest
(Cellular Therapeutics Ltd) | Yes | | Gene therapy for ADA-SCID. Autologous haematopoietic stem cells transplanted after modification with a retroviral vector expressing the human ADA gene | Great Ormond
Street Hospital,
London | Phase 1/2 | 2003 | 10 | No | CD34+ stem cells | Autologous | Bone marrow or cord blood | Blood | Adenosine Deaminase
Deficiency | Anne-Marie McNicol
Clinical Trials Coordinator
UCL Institute of Child Health
London
anne-marie.mcnicol@ucl.ac.uk | Yes | | Gene therapy for Wiskott-Aldrich
syndrome. Patient's own
haematopoietic stem cells
transplanted after modification
with a lentiviral vector expressing
the human Wiskott-Aldrich
Syndrome protein gene | Genethon,
France/Great
Ormond Street
Hospital, London | Phase 1/2 | 2010 | 5 | Yes | CD34+ stem cells | Autologous | Bone marrow or
peripheral blood
following
mobilisation | Blood | Wiskott-Aldrich
syndrome | Anne-Marie McNicol
Clinical Trials Coordinator
UCL Institute of Child Health
London
anne-marie.mcnicol@ucl.ac.uk | Yes | | Gene therapy for SCID-X1. Autologous haematopoietic stem cells transplanted after modification with a self-inactivating gammaretroviral vector expressing the human common cytokine receptor gamma-chain gene | Great Ormond
Street Hospital,
London | Phase 1/2 | 2011 | 10 | Yes | CD34+ stem cells | Autologous | Bone marrow | Blood | X-linked severe
combined
immunodeficiency | Anne-Marie McNicol
Clinical Trials Coordinator
UCL Institute of Child Health
London
anne-marie.mcnicol@ucl.ac.uk | Yes | | T cell suicide gene therapy
following haploidentical stem cell
transplantation. Infusion of
transduced donor T cells expressing
HSVTK in the haploidentical setting,
to enable removal of donor T cells
in the event of GvHD. | Great Ormond
Street Hospital,
London | Phase 1/2 | 2011 | 10 | Yes | Donor T cells | Allogeneic | Peripheral blood | Blood | Patients with primary immunodeficiencies, haematological malignancies or metabolic disorders undergoing haploidentical transplant | Anne-Marie McNicol, Clinical Trials
Coordinator, UCL Institute of Child
Health, London (anne-
marie.mcnicol@ucl.ac.uk) | Yes | | Lentiviral gene therapy for ADA-
SCID. Autologous haematopoietic
stem cells transplanted after
modification with a lentiviral vector
expressing the human ADA gene | Great Ormond
Street Hospital,
London | Phase 1/2 | 2012 | 10 | Yes | CD34+ stem cells | Autologous | Bone marrow or
peripheral blood
following
mobilisation | Blood | Adenosine Deaminase
Deficiency | Anne-Marie McNicol
Clinical Trials Coordinator
UCL Institute of Child Health
London
anne-marie.mcnicol@ucl.ac.uk | Yes | | Randomised control trial to
compare the effects of G-CSF and
autologous bone marrow
progenitor cells infusion in patients
with ischaemic heart disease | Barts Health NHS
Trust, Queen Mary
University of
London | Phase 2 | 2005 | 90 | Recruitment completed,
in follow up | Bone marrow
mononuclear cells | Autologous | Bone marrow
derived | Cardiovascular | Heart failure
secondary to
ischaemic heart
disease | Professor Anthony Mathur, William
Harvey Research Institute, Queen
Mary University
(a.mathur@qmul.ac.uk) | Yes | |---|--|-----------|------|---|--|--|------------|------------------------|------------------|---|--|-----| | Autologous bone marrow derived
mononuclear cells for acute
myocardial infarction. Combines
stem cell delivery with primary
angioplasty within 5 hours post
event | Barts Health NHS
Trust, Queen Mary
University of
London, University
College London | Phase 1/2 | 2007 | 70 | Yes | Bone marrow
mononuclear cells | Autologous | Bone marrow
derived | Cardiovascular | Acute myocardial infarction | Professor Anthony Mathur, William
Harvey Research Institute, Queen
Mary University
(a.mathur@qmul.ac.uk) | Yes | | Autologous bone marrow derived mononuclear cells for dilated cardiomyopathy, delivered via intracoronary injection | Barts Health NHS
Trust, Queen Mary
University of
London | Phase 1/2 | 2010 | 60 | Yes | Bone marrow
mononuclear cells | Autologous | Bone marrow
derived | Cardiovascular | Dilated
cardiomyopathy | Professor Anthony Mathur, William
Harvey Research Institute, Queen
Mary University
(a.mathur@qmul.ac.uk) | Yes | | Expanded adult haematopoietic stem cells for autologous infusion to patients with myocardial ischaemia | Imperial College
London | Phase 1/2 | 2011 | 42 | Yes | Expanded
haematopoietic
CD34+ stem cells | Autologous | Bone marrow | Cardiovascular | Localised myocardial dysfunction | Anne Bradshaw, Imperial College
Healthcare NH5 Trust
(anne.bradshaw@imperial.nhs.uk;
0203 313 2056) | Yes | | Stem cells in rapidly evolving active multiple sclerosis (STREAMS) | Imperial College
London | Phase 2 | 2012 | 13 | Yes | Mesenchymal
stromal cells | Autologous | Bone marrow | Neurological | Relapsing remitting
multiple sclerosis/
secondary progressive
multiple sclerosis/
primary progressive
multiple sclerosis | Anne Bradshaw, Imperial College
Healthcare NHS Trust
(anne.bradshaw@imperial.nhs.uk;
0203 313 2056) | Yes | | Fetal brain tissue transplant for
Parkinson's disease (TRANSEURO:
An Innovative Approach for the
Treatment of Parkinson's Disease) | Cambridge
University | Phase 1/2 | 2012 | 20 transplanted
patients, 20
controls | Yes, but all patients recruited to this study have been previously enrolled in the Transeuro observational study and all patients are selected from the observational study to take part in the transplant study | Fetal brain | Allogeneic | | Neurological | Parkinson's disease | Danielle Daft, University of
Cambridge | Yes | | Autologous bone marrow derived
CD34+ cells for ischemic stroke,
administered within 7 days post
event | Imperial College
London | Phase 1 | 2007 | 10 | Yes | Expanded CD34+
cells | Autologous | Bone marrow
derived | Neurological | Ischemic stroke | Professor Nagy Habib, Imperial College
London (nagy.habib@imperial.ac.uk) | Yes | | ReN001: CTX neural progenitor cells for stroke disability | ReNeuron | Phase 1 | 2010 | 12 | Yes | Neural | Allogeneic | Brain (cortex) | Neurological | Stroke disability | Dr John Sinden, ReNeuron Group plc
(info@reneuron.com) | Yes | | Autologous CD34+ haematopoietic
cells for Crohn's disease | European Group for
Blood and Marrow
Transplantation
(EMBT) | Phase 2/3 | 2006 | 45 | No | CD34+ stem cells | Autologous | Bone marrow
derived | Gastroenterology | Crohn's disease | Prof Hawkey, NDDC, West Block, E
Floor, University Hospital, QMC,
Nottingham NG7 2UH
(cj.hawkey@nottingham.ac.uk) Trial
Coordinator: Miranda Clark
(astic@nottingham.ac.uk) | Yes | | Repeated infusions of autologous
CD133+ bone marrow stem cells for | Birmingham
University, | Phase 2 | 2009 | 81 | Yes | CD133+
haematopoietic | Autologous | Bone marrow | Gastroenterology | Liver cirrhosis | Dr Philip Newsome, University of
Birmingham | Yes | | Autologous expanded
haemopoietic cells for liver
insufficiency. Adminstered after 7
days expansion via the portal vein
or hepatic artery | Imperial College
London | Phase 1/2 | 2005 | | Yes | Expanded CD34+ | Autologous | Derived by
leukapheresis | Gastroenterology
(Liver) | Liver insufficiency | Professor Nagy Habib, Imperial College
London (nagy.habib@imperial.ac.uk) | Yes | |--|---|---|------|-----|-----|---|------------|---|-----------------------------|--|--|-----| | Autologous cultured human limbal
epithelium for limbal stem cell
deficiency (ophthalmology) | Newcastle
University | Phase 2 | 2012 | 24 | Yes | Corneal | Autologous | Limbus | Ophthalmology | Limbal stem cell
deficiency | Professor Francisco C Figueiredo,
Newcastle University, UK | Yes | | Corneal stem cells (allogeneic
limbal epithelial stem cells on
amniotic membrane) | Edinburgh
University, Scottish
National Blood
Transfusion Service | Phase 1/2 | 2011 | 20 | Yes | Corneal | Allogeneic | Limbus | Ophthalmology | Corneal stem cell
deficiency | Margaret MacDonald, Research Nurse
co-ordinator PAEP | Yes | | Retinal pigment epithelial cell
replacement for Stargardt's disease | Advanced Cell
Technology | Phase 1/2 | 2011 | 12 | Yes | Retinal pigment
epithelium cell
replacement
derived from
human embryonic
stem cell | Allogeneic | Embryonic | Ophthalmology | Stargardt's disease | Dr. James Bainbridge, Moorefields Eye
Hospital, London
(j.bainbridge@ucl.ac.uk) | Yes | | A Phase 3, multicenter,
randomized, double-blind, parallel
assignment study to assess the
efficacy and safety of Reparixin in
pancreatic islet transplantation | Dompé | Phase 3 | 2013 | 10 | Yes | Pancreatic islets | Allogeneic | Deceased donor
pancreas | Diabetes | Type 1 diabetes
complicated by
recurrent severe
hypoglycaemia | Prof James Shaw, Institute of Cellular
Medicine, Newcastle University | Yes | | Autologous expanded CD34+ subser
for diabetes. Administered after 21
days expansion | | Phase 1 | 2007 | | Yes | Expanded CD34+
subset | Autologous | Derived by
leukapheresis | Diabetes | Diabetes type I or II | Professor Nagy Habib, Imperial College
London (nagy.habib@imperial.ac.uk) | Yes | | Biomedical and psychosocial
outcomes of islet transplantation
within the NHS clinical programme | Newcastle
University | Experimental
medicine follow-
up of patients
transplanted in UK
clinical
programme | 2007 | 100 | Yes | Pancreatic islets | Allogeneic | Deceased donor
pancreas | Diabetes | Type 1 diabetes
complicated by
recurrent severe
hypoglycaemia | Prof James Shaw, Institute of Cellular
Medicine, Newcastle University | Yes | | A comparison of Autologous
Chondrocytes Implantation (ACI)
versus existing techniques for knee
cartilage repair | Keele University
(Sponsor), Robert
Jones & Agnes Hun
Orthopaedic
Hospital NHS Trust
(Host organisation | Norway sites) | 2005 | 400 | No | Chondrocytes | Autologous | Articular
cartilage from
non weight-
bearing area of
knee | Bone and
Cartilage | Chondral/
osteochondral defect: | Professor James Richardson, Institute
of Orthopaedics, Robert Jones & Agnes
s Hunt Orthopaedic Hospital, Oswestry,
SY10 7AG | Yes | | PACINO: Autologous cell therapy of
fracture nonunion – cell phenotype
as a predictor of outcome | | Phase 2 | 2011 | 60 | Yes | Mesenchymal stem
Cells | Autologous | Bone marrow | Bone and cartilage | Bone regeneration an
healing (orthopaedics | | Yes | | Autologous mesenchymal stem
cells (MSCs) for knee meniscal
repair. MSCs grown on biological
scaffold for 2 weeks then surgically
implanted | Azellon Cell
Therapeutics | Phase 1/2 | 2012 | 10 | Yes | Mesenchymal stem
cells | Autologous | Bone marrow | Bone and cartilage | Knee meniscus repair | Professor Anthony Hollander, (CSO at
Azellon); Univeristy of Bristol
(anthony.hollander@bristol.ac.uk) | Yes |