| Name of
Sponsor | Title | Project Summary | Clinical Database
Numbers | Lead Institution/
Company and
Collaborator Partners | United Kingdom Site(s) | Clinical
Trial Status | Trial
Phase | Year
Trial
Starte
d | Recruitme
nt Target | Cell Type | Cell
Source | Gene
Modificat
ion/
Gene | If applicable,
type of virus
vector used | Autologou
s/
Allogeneic | Disease Area | Indication | Contact | |--|---|---|---|---|--|--------------------------|----------------|------------------------------|--|---|----------------|-----------------------------------|--|-------------------------------|--------------------------------------|---|--| | Cell Medica
Ltd. | A Phase I/II clinical trial to
investigate the safety of adenovirus-
specific T-cells given to high-risk
paediatric patients post allogeneic
haematopoietic stem cell transplant
(HSCT) to treat reactivation of
adenovirus (ASPIRE trial). | Adoptive T cell therapy for the reconstitution of immunity to adenovirus (ADV) in paediatric patients following bone marrow transplantation | 2011-001788-36 | Cell Medica (3 UK Sites) | Great Ormond Street Hospital
London, Royal Manchester
Children's Hospital, Royal
Victoria Infirmary | 6- Closed | Phase I/II | 2012 | 15 treated patients | T cells | Blood | No | | Allogeneic | Cancer
(Haematology) | ADV in
paediatric
patients
following bone
marrow
transplantation | dica.co.uk) | | Cell and
Gene
Therapy
Catapult Ltd | WT1 TCR Gene Therapy for
Leukaemia: A Phase I/II Safety and
Toxicity Study (WT1 TCR-001) | WT1 TCR gene therapy for leukaemia: a phase I/II safety and toxicity study (WT1 TCR-001) | 2006-004950-25
NCT01621724 | University College
London | Queen Elizabeth Hospital
University Hospitals Bristol
NHS Foundation Trust
University College London
Hospitals NHS Trust | 3- Recruiting | Phase I/II | 2012 | 18 | T cells | Blood | Yes ex-vivo | Gamma-
retrovirus | Autologous | Cancer
(Haematology) | Acute myloid
leukaemia;
chronic myloid
leukaemia | Sara Marques Sara.Marques@ct.catapu lt.org.uk Contact: Emma Morris, Dr e.morris@ucl.ac.uk | | The Christie
NHS
Foundation
Trust | A Phase II Trial to Assess the
Activity of NY-ESO-1 Targeted T
Cells in Advanced Oesophagogastric
Cancer (ATTACK-OG). | This is a trial of adoptive T cell therapy using the patient's own T cells, genetically engineered to target the tumour associated antigen NY-ESO-1 (New York esophageal squamous cell carcinoma 1). | NCT01795976; UK
CRN 14133;
83343031 | Christie Hospital NHS Foundation Trust Erasmus Medical Center Ospedale San Raffaele University College London Hospitals Karolinska University Hospital The Netherlands Cancer Institute | The Christie NHS Foundation
Trust
Manchester | 4- Suspended | Phase II | 2013 | 28 | T cells | Blood | Yes ex-vivo | Lentiviral
vector
expressing the
tumour antigen
NY-ESO-1 | Autologous | Cancer | Oesophagogast
ic cancer | Prof Robert Hawkins (The Christie NHS Foundation Trust) / Ryan Guest (Cellular Therapeutics Ltd) | | Great Ormond Street Hospital NHS Trust / University College London | Gene therapy for SCID-X1 using a
self-inactivating (SIN)
gammaretroviral vector. | Gene therapy for SCID-X1. Autologous haematopoietic stem cells transplanted after modification with a self-inactivating gammaretroviral vector expressing the human common cytokine receptor gamma-chain gene | 2007-000684-16 | Great Ormond Street
Hospital, London | Great Ormond Street
Hospital, London | 5- In follow-
up | Phase I/II | 2011 | 10 | CD34
and/or
CD133
stem cells | Other | Yes ex-vivo | Self-
inactivating
(SIN)
Gammaretrovir
us | Autologous | Inflammatory
and immune
system | X-linked severe
combined
immunodeficie
ncy | Manager | | Great
Ormond
Street
Hospital
NHS Trust | Phase I/II, non-controlled, open-
label, non-randomised, single-
centre trial to assess the safety and
efficacy of ΕΡιαS-ADA lentiviral
vector mediated gene modification
of autologus CD34+ cells from ADA-
deficient individuals | Lentiviral gene therapy for ADA-SCID. Autologous haematopoietic stem cells transplanted after modification with a lentiviral vector expressing the human ADA gene | 2010-024253-36;
NCT01380990 | Great Ormond Street
Hospital, London | Great Ormond Street
Hospital, London | 5- In follow-
up | Phase I/II | 2012 | 10 | CD34
and/or
CD133
stem cells | Blood | Yes ex-vivo | Lentiviral
vector | Autologous | Inflammatory
and immune
system | Adenosine
Deaminase
Deficiency | Havinder Hara
Clinical Project Manager
UCL Institute of Child
Health
London
h.hara@ucl.ac.uk | | UK Stem
Cell
Foundation
/ Heart
Cells
Foundation | Randomised Controlled Clinical
Trial of the Use of Autologous Bone
Marrow Derived Progenitor Cells to
Salvage Myocardium in Patients
With Acute Anterior Myocardial
Infarction (REGEN-AMI) | Autologous bone marrow derived mononuclear cells for acute myocardial infarction. Combines stem cell delivery with primary angioplasty within 5 hours post event | NCT00765453 | Barts Health NHS Trust,
Queen Mary University of
London, University
College London | and The London NHS Trust, London The Heart Hosptial, UCLH Foundation Trust, London The Royal Free Hospital, | 5- In follow-
up | Phase II | 2007 | 100 | Bone
marrow
mononucle
ar cells | Bone
marrow | No | | Autologous | Cardiovascular | Acute
myocardial
infarction | Professor Anthony
Mathur, William Harvey
Research Institute,
Queen Mary University
(a.mathur@qmul.ac.uk) | | University | The effect of intracoronary
reinfusion of bone marrow-derived
mononuclear cells (BM-MNC) on all
cause-mortality in acute myocardial
infarction | Autologous bone marrow derived mononuclear cells for patients with impaired LV function post myocardial infarction, delivered via intracoronary injection | UK CRN15079;
NCT01569178 | Barts Health NHS Trust,
Queen Mary University of
London | New Cross Hospital, Wolverhampton Queen Mary University of London, London University College London, London | 3- Recruiting | Phase III | 2011 | 350-400 | Bone
marrow
mononucle
ar cells | Bone
marrow | No | | Autologous | Cardiovascular | Acute
myocardial
infarction | Professor Anthony
Mathur, William Harvey
Research Institute,
Queen Mary University
(a.mathur@qmul.ac.uk) | | University
of
Cambridge | An Open Label Study to Assess the
Safety and Efficacy of Neural Allo-
Transplantation With Fetal Ventral
Mesencephalic Tissue in Patients
With Parkinson's Disease | Fetal brain tissue transplant for Parkinson's disease (TRANSEURO: An
Innovative Approach for the Treatment of Parkinson's Disease) | NCT01898390 | Univeristy of Cambridge Lund University Cardiff University Imperial College London University College London University Hospital Freiburg Life Science Governance Institute Assistance Publique - Hopitaux de Paris Institut National de la | Cardiff University
Imperial College London
University College London
University of Cambridge | 5- In follow-
up | Phase I/II | 2012 | 40: 20
transplanted
patients, 20
controls | Neural | Tissue | No | | Allogeneic | Neurological | Parkinson's
disease | Natalie Valle Guzman,
University of
Cambridge, Transeuro
trial manager | | ReNeuron
Limited, UK | A Phase I Safety Trial of CTX0E03
Drug Product Delivered
Intracranially in the Treatment of
Patients With Stable Ischemic
Stroke | CTX stem cells for the treatment of stroke disability (PISCES) | EudraCT: 2008-
000696-19
ClinTrials:
NCT01151124 | Queen Elizabeth
University Hospital | Glasgow Southern General
Hospital | 5- In follow-
up | Phase I | 2010 | 12 | Neural | Tissue | No | | Allogeneic | Neurological | Stroke
disability | Dr John Sinden,
ReNeuron Ltd.:
info@reneuron.com | | Name of
Sponsor | Title | Project Summary | Clinical Database
Numbers | Lead Institution/
Company and
Collaborator Partners | | Clinical
Trial Status | Trial
Phase | Year
Trial
Starte
d | Recruitme
nt Target | Cell Type | Cell
Source | Gene
Modificat
ion/
Gene | If applicable,
type of virus
vector used | s/ | Disease Area | Indication | Contact | |---
---|---|---|--|---|--------------------------|-----------------|------------------------------|------------------------------------|---|----------------|-----------------------------------|--|------------|--------------------------------------|---|--| | | A Phase II Efficacy Study of
Intracerebral CTX0E03 DP in
Patients with Stable Paresis of the
Arm Following an Ischaemic Stroke | CTX stem cells for the treatment of stroke disability (PISCES II) | EudraCT: 2012-
003482-18
ClinTrials:
NCT02117635 | Queen Elizabeth
University Hospital | Queen Enzabeth Hospital, Birmingham NHS Southern General Hospital, Glasgow King's College Hospital, London Univesity College London Hospital Royal Victoria Infimary, | 5- In follow-
up | Phase II | 2014 | 21 | Neural | Tissue | No | | Allogeneic | Neurological | Stroke
disability | Dr John Sinden,
ReNeuron Ltd.:
info@reneuron.com | | ReNeuron
Limited, UK | A Phase I Ascending Dose Safety
Study Of Intramuscular CTXoEo3
In Patients With Lower Limb
Ischaemia | CTX stem cells for the treatment of Lower Limb Ischaemia (Safety study) | EudraCT: 2011-
005810-13
ClinTrials:
NCT01916369 | Ninewells Hospital,
Dundee | Ninewells Hospital, Dundee | 5- In follow-
up | Phase I | 2014 | 9 | Neural | Tissue | No | | Allogeneic | Cardiovascular | Peripheral
Arterial Disease-
lower limb
ischaemia | Dr John Sinden,
ReNeuron Ltd.:
info@reneuron.com | | The European Blood and Marrow Transplant Group | Autologous stem cell
transplantation international
Crohn's disease trial | Autologous CD34+ haematopoietic cells for Crohn's disease | 2005-003337-40 ;
ISRT39133198 ; UK
CRN 7107 | European Group for
Blood and Marrow
Transplantation (EBMT) | Nottingham University
Hospital | 6- Closed | Phase
II/III | 2006 | 45 | CD34
and/or
CD133
stem cells | Bone
marrow | No | | Autologous | Oral and
Gastrointestin
al | Crohn's disease | Prof Hawkey, NDDC,
West Block, E Floor,
University Hospital,
QMC, Nottingham NG7
2UH
(ci.hawkey@nottingham | | | Treatment of LSCD using cultured limbal epithelium expanded ALSC | Autologous cultured human limbal epithelium for limbal stem cell deficiency (ophthalmology) | 2011-000608-16;
51772481; UK CRN
11185 | Newcastle University | N/A | 5- In follow-
up | Phase II | 2012 | 24 | Corneal | Tissue | No | | Autologous | Eye | Limbal stem
cell deficiency | Professor Francisco C
Figueiredo, Newcastle
University, UK | | University
of
Newcastle
upon Tyne | Biomedical / psychosocial islet cell
transplant outcomes | Biomedical and psychosocial outcomes of islet transplantation within the NHS clinical programme | UK CRN 4166 | Newcastle University | N/A | 3- Recruiting | Phase III | 2007 | 100 | Pancreatic
islets | Other | No | | Allogeneic | Diabetes | Type 1 diabetes
complicated by
recurrent
severe
hypoglycaemia | Prof James Shaw,
Institute of Cellular
Medicine, Newcastle
University | | Agnes Hunt
Orthopaedic
Hospital
NHS | Autologous Cell Therapy for
Osteoarthritis: An evaluation of the
safety and efficacy of autologous
transplantation of articular
chondrocytes and/or bone marrow-
derived stromal cells to repair
chondral/osteochondral lesions of
the knee (ASCOT). | The principal research question of this trial is to find out if treatment with either a patient's own cartilage cells (selected and culture expanded chondrocytes), or bone marrow-derived stromal cells (containing selected and culture expandedstem cells), or a combination of the two cell types, give a different clinical outcome, in terms of knee function, for patients with early osteoarthritis of the knee. | 2010-022072-31 | The Robert Jones and
Agnes Hunt Orthopaedic
Hospital NHS
Foundation Trust | The Robert Jones and Agnes
Hunt Orthopaedic Hospital
NHS Foundation Trust | 3- Recruiting | Phase II | 2013 | 114 | Mesenchy
mal
stem/strom
al cells | Bone
marrow | No | | Autologous | Bone and
cartilage | Osteochondral
defects of the
knee (early
osteoarthritis) | Prof James Richardson;
Dr Johanna Wales | | | A Prospective Open-Label Study to
Evaluate the Safety of Cell Bandage
(Mesenchymal Stem Cells) in the
Treatment of Meniscal Tears | Autologous mesenchymal stem cells (MSCs) for knee meniscal repair. MSCs
grown on biological scaffold for 2 weeks then surgically implanted | 2010-024162-22 | Azellon Cell Therapeutics | N/A | 3- Recruiting | Phase I/II | 2012 | 10 | Mesenchy
mal
stem/strom
al cells | Bone
marrow | No | | Autologous | Bone and cartilage | Knee meniscus
repair | Professor Anthony
Hollander, (CSO at
Azellon); Univeristy of
Bristol () | | Newcastle
upon Tyne
Hospitals
NHS
Foundation
Trust | Autologous Tolerogenic Dendritic
Cells for Rheumatoid and
Inflammatory Arthritis | Patients with inflammatory arthritis with active involvement of a knee joint undergo leukapheresis. Monocytes are positively selected and differentiated into tolerogenic dendritic cells over the course of 7 days. The tolerogenic dendritic dendritic cells are then arthroscopically injected into the inflamed knee following saline wash-out. Primary outcomes are safety and tolerability. Biomarkers will be measured in synovial mambrane biopsies and peripheral blood (baseline and +14 days). In this ascending dose study we will study one, three and ten million tolerogenic DCs (3 patients per cohort) and there is also a placebo cohort who receive saline washout only. Follow-up is for thirteen weeks nost administration of tolerogenic DCs. The main study has completed but we | NCT01352858;
87426082 ; UK
CRN 12108 | Arthritis Research UK
Newcastle-upon-Tyne
Hospitals NHS Trust | Newcastle RVI | 3- Recruiting | Phase I | 2011 | 12 plus 3 in
extension
study | Antigen
presenting
cells | Blood | No | | Autologous | Inflammatory
and immune
system | Rheumatoid
and
Inflammatory
Arthritis | Prot John Isaacs Newcastle University Institute of Cellular Medicine Framlington Place Newcastle Upon Tyne Tyne and Wear NEI 7RU IINITED KINGDOM | | University | CMV TCR Gene Therapy: A Phase I
Safety, Toxicity and Feasibility
Study of Adoptive Immunotherapy
with CMV TCR-transduced Donor-
derived T cells for Recipients of
Allogeneic Haematopoietic Stem
Cell Transplantation | CMV TCR Gene Therapy: A Phase I Safety, Toxicity and Feasibility Study of Adoptive Immunotherapy with CMV TCR-transduced Donor-derived T cells for Recipients of Allogeneic Haematopoietic Stem Cell Transplantation | UK CRN 12518;
2008-006649-18 | UCL | N/A | 3- Recruiting | Phase I | 2013 | 10 | T cells | Other | Yes ex-vivo | Retroviral
vector | Allogeneic | Cancer
(Haematology) | CMV
seronegative
HSCT donors &
CMV
seropositive
HSCT
recipients | Dr Emma Morris e.morris@ucl.ac.uk or Rachel Richardson University College London Institute of Immunity and Transplantation Rowland Hill Street Hampstead London NW3 2PF UNITED KINGDOM | | University
College
London | Immunotherapy with CD25/71
Allodepleted T-cells (ICAT) | Adoptive Immunotherapy with CD25/71 allodepleted donor T-cells to improve immunity after unrelated donor stem cell transplant (ICAT) | UK CRN14779 ;
NCT01827579 | CR UK and UCL Cancer
Trials Centre
Medical Research Council | Manchester Royal Infirmary
University College London
Hospital, London | 3- Recruiting | Phase II | 2014 | 24 | T cells | Blood | No | | Allogeneic | Cancer
(Haematology) | Haematological
Malignancies | ICAT trial coordinator Cancer Research UK & UCL Cancer Trials Centre 90 Tottenham Court Road London W1T 4TJ UNITED KINGDOM Tel: 0207 670 0327 | | Name of
Sponsor | Title | Project Summary | Clinical Database
Numbers | Lead Institution/
Company and
Collaborator Partners | United Kingdom Site(s) | Clinical
Trial Status | Trial
Phase | Year
Trial
Starte
d | Recruitme
nt Target | Cell Type | Cell
Source | Gene
Modificat
ion/
Gene | If applicable,
type of virus
vector used | s/ | Disease Area | Indication | Contact |
---|---|--|-------------------------------|--|--|--------------------------|----------------|------------------------------|------------------------|---|----------------|-----------------------------------|--|------------|--------------------------------------|--|---| | King's
College
London | Phase I Trial: T4 Immunotherapy of
Head and Neck Cancer | Patients with locally advanced/ recurrent head and neck cancer will receive autologous gene-modified by intratumoral injection in this Phase 1 dose escalation study. T-cells will be engineered to co-express a broadly reactive ErbB targeted CAR with a chimeric cytokine receptor that allows ex-vivo expansion of cell products using IL-4. | | Guy's and St Thomas'
NHS Foundation Trust | Guy's Hospital, London | 3- Recruiting | Phase I | 2015 | 30 | T cells | Blood | Yes ex-vivo | Retroviral
vector | Autologous | Cancer | Locally
advanced/
recurrent
disease for
which no
suitable
alternative
therapy is
available | John Maher
King'sCollege London,
john.maher@kcl.ac.uk | | Cardiff
University | Safety and feasibility of neural
transplantation in early to moderate
Huntington's disease in the UK. | Safety and feasibility of neural transplantation in early to moderate
Huntington's disease in the UK. | UKCRN 3827 | Cardiff University | N/A | 2- In set-up | Phase I | 2014 | 60 | Neural | Other | No | | Allogeneic | Neurological | Neurological | Prof Anne Rosser, The
Brain Repair Group,
School of Biosciences,
Cardiff University,
Museum Avenue, Cardiff
CF10 3AX, South Wales,
U.K. | | Guy's and St
Thomas'
NHS
Foundation
Trust | Safety and Efficacy Study of
Regulatory T Cell Therapy in Liver
Transplant Patients (ThRIL) | This is a clinical trial in patients undergoing liver transplantation. Research has shown that regulatory T-cells can induce tolerance to the graft in laboratory animals that have undergone organ transplantation. In this study, liver recipients will receive a single infusion of TROO2, a cell therapy product that consists of regulatory T-cells that are grown and purified from the patients' own blood. The trial aims to explore the feasibility, safety, and efficacy of TROO2 as add-on immunosuppressive treatment in the context of liver transplantation. | NCT02166177, UK
CRN 16775 | Kings College Hospital | N/A | 3- Recruiting | Phase I/II | 2014 | 26 | T cells | Blood | No | | Autologous | Inflammatory
and immune
system | End-Stage Liver
Disease | Alberto Sanchez-Fueyo,
MD, PhD
Gavin Whitehouse, BM,
MRCP(UK) | | University
College,
London | Clinical Trial of Stem Cell Based
Tissue Engineered Laryngeal
Implants (RegenVOX) | This study aims to test a new groundbreaking treatment for narrowing of the voicebox and upper windpipe, which can be due to injury, inflammatory disease or cancer treatment. The new treatment tested by this study is an implant that will partially replace the voicebox or upper windpipe in order to cure the narrowing. The implant is based on a human donor voicebox or windpipe that has been processed with detergents and enzymes in order to remove all the cells from the donor, leaving a 'scaffold' of connective tissue. The patient's own stem cells are removed from the bone marrow, then are grown on the scaffold. A split skin graft from the patient may be needed to line the inside of the implant. Once these cells have attached and started to grow on the scaffold, it is ready to be implanted into the patient, and an operation is performed which occurs in two separate stages. The final stage of the operation involves removing the narrow | NCT01977911 | University College,
London | University College London
Hospital, London | 3- Recruiting | Phase I/II | 2015 | 10 | Bone
marrow
mononucle
ar cells | Bone marrow | No | | Autologous | Respiratory | Ear, Nose and
Throat | Martin Birchall and
Steve Bloor | | Cell Medica
Inc | A Phase 2 Single Arm Study to
Investigate the Efficacy of
Autologous EBV-specific T-cells for
the Treatment of Patients With
Aggressive EBV Positive Extranodal
NK/T-cell Lymphoma (ENKTCL) | Autologous EBV specific T-cells for treatment of EBV+ve lymphomas (CITADEL Study) | NCT01948180 | Cell Medica (24 clinical
sites, US, UK, Fr, De and
SK) | University College London
Hospital, London
The Christic Clinic,
Manchester | 3- Recruiting | Phase II | 2015 | 35 | T cells | Blood | No | | Autologous | Cancer
(Haematology) | NK/T cell
lymphoma | Shannon Inman, Cell
Medica
(shannon.inman@cellme
dica.co.uk) | | Guy's and St
Thomas'
NHS
Foundation
Trust | The ONE Study UK Treg Trial
(ONETreg1) | A study to assess cell therapy as a treatment to prevent kidney transplant rejection. The trial will involve purification of naturally occurring regulatory T cells (nTregs) from living-donor renal transplant recipients. The cells will then be grown in the laboratory and re-infused into the patient five days after the kidney transplant. This trial is part of an international European Union funded consortium aimed at evaluating cellular immunotherapy in solid organ transplantation (The ONE Study). It is anticipated that immune regulation induced by nTreg therapy can eventually be used to reduce the need for | NCT02129881 | King's College London | Guy's Hospital Recruiting
London,
The Oxford Transplant Centre
- Churchill Hospital | 5- In follow-
up | Phase I/II | 2014 | 12 | T cells | Blood | No | | Autologous | Inflammatory
and immune
system | End-stage
kidney disease | Dr Rachel Hilton
BMBCh PhD | | Cell and
Gene
Therapy
Catapult Ltd | myelodysplastic syndrome (MDS)
or acute myeloid leukaemia (AML) | Conventional immunosunanession in transplant recinients This is a Phase I/II trial to determine safety, clinical efficacy and feasibility of a gene-modified WT1 TCR therapy in patients with myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). Patient's white blood cells (T cells) will be modified by transferring a gene which enables them to make a new T cell receptor (TCR) that can recognize fragments of a protein called WT1 (Wilms' tumour 1) which is present at abnormally high levels on the surface of myelodysplastic and leukaemic cells. In this trial, approximately 25 participants with an Human Leukocyte Antigen A2 (HLA-A*0201) tissue type who have failed to achieve or maintain an IWG defined response following hypomethylating agent therapy will be recruited. | 2014-003111-10
NCT02550535 | University College
Hospital London | Aberdeen Royal Infirmary Recruiting Aberdeen, United Kingdom University Hospitals Bristol NHS Foundation Trust Recruiting Bristol, Western General Hospital, Edinburgh The Leeds Teaching Hospitals NHS Trust, Leeds University College London Hospitals NHS Trust, London | | Phase I/II | 2015 | 25 | T cells | Blood | Yes ex-vivo | Gamma-
retrovirus | Autologous | Cancer
(Haematology) | Myeloidysplasti
c Syndrome and
Acute Myeloid
Leukaemia | Jacqueline Barry
jacqueline.barryr@ct.cat
apult.org.uk
Dominic Bowers
dominic.bowers@ct.cata
pult.org.uk | | Cell and
Gene
Therapy
Catapult Ltd | A Phase I Open-label Study to
Assess the Safety, Tolerability and
Potential Efficacy of a Novel
Tracheal Replacement Consisting of
a Tissue-engineered Decellularised
Tracheal Scaffold With Seeded
Autologous Mesenchymal Cells in
Subjects With Severe Tracheal
Stenosis or Malacia | This is a phase I study to evaluate the safety, tolerability and potential efficacy of a novel tracheal replacement therapy using cadaveric de-cellularised tracheal scaffold and patients' own mesenchymal cells isolated from a sample of their bone marrow in patients' who suffer from severe tracheal malacia or stenosis and for whom conventional therapies are no longer adequate. A total of 4 patients will be treated during the course of
this study. | 2015-002108-10
NCT02949414 | University College
London
Videregen | Royal Nose Throat and Ear
Institute | 2- In set-up | Phase I | Expecte
d 2015 | | Mesenchy
mal
stem/strom
al cells | Bone
marrow | No | | Autologous | Respiratory | Tracheal
Stenosis and
Tracheomalacia | Martin Birchall
University College
London
Jacqueline Barry
Cell and Gene Therapy
Catapult | | Name of
Sponsor | Title | Project Summary | Clinical Database
Numbers | Lead Institution/
Company and
Collaborator Partners | United Kingdom Site(s) | Clinical
Trial Status | Trial
Phase | Year
Trial
Starte | Recruitme
nt Target | Cell Type | Cell
Source | Gene
Modificat
ion/
Gene | If applicable,
type of virus
vector used | s/ | Disease Area | Indication | Contact | |--|--|---|--|---|--|--------------------------|----------------|-------------------------|------------------------|---|----------------|-----------------------------------|--|------------|-------------------------|--|--| | Athersys,
Inc, USA | A Phase 1/2 Study to Assess the
Safety and Efficacy of MultiStem®
Therapy in Subjects with Acute
Respiratory Distress Syndrome | A Phase 1/2 Study to Assess the Safety and Efficacy of MultiStem® Therapy in
Subjects with Acute Respiratory Distress Syndrome | 2015-001586-96 | University College
London
Cell Therapy Catapult | University College London Hospital, London St Georges Hospital, London Queen Elizabeth Hospital, Birmingham John Radcliffe Hospital, Oxford Addenbrookes Hospital, Cambridge Wythenshawe Hospital, Manchester Manchester Royal Infirmary, Manchester | 3- Recruiting | Phase I/II | 2015 | 40 | Mesenchy
mal
stem/strom
al cells | Bone
marrow | No | | Allogeneic | Respiratory | Acute
Respiratory
Distress
Syndrome | Jacqueline Barry
Cell and Gene Therapy
Catapult
12th Floor Tower Wing
Guy's Hospital
Great Maze Pond
SE1 9RT | | King's
College
London and
Guy's & St
Thomas'
NHS
Foundation
Trust | Phase I study of COL7A1 gene-
modified autologous fibroblasts in
adults with recessive dystrophic
epidermolysis bullosa. | Phase I study to evaluate whether intradermal injections of COL7A1 gene-
modified autologous fibroblasts are safe in adults with recessive dystrophic
epidermolysis bullosa. | NCT02493816 | King's College London | Guy's and St Thomas' NHS
Foundation Trust | 3- Recruiting | Phase I | 2015 | 5 to 10 | Fibroblasts | Tissue | Yes ex-vivo | Lentiviral
vector | Autologous | Skin | Recessive
dystrophic
epidermolysis
bullosa | Professor John A. McGrath Guy's Hospital Great Maze Pond London SE1 9RT UNITED KINGDOM Tel: 02071886409 john.mcgrathf@kcl.ac.u | | Innovacell
Biotechnolo
gie AG,
Austria | Skeletal muscle-derived cell
implantation for the treatment of
fecal incontinence: a multicenter,
randomized, double-blind, placebo-
controlled, parallel-group, dose-
finding clinical study | Ongoing clinical trial for clinical investigation of aSMDC therapy of F1 with the research medicinal product ICEF15. Objective of the study is to find the optima cell count for functional regeneration of the external anal sphincter. The study i planned as a multinational, multicenter, randomized, double-blind, placebo-controlled, parallel-group, clinical study. A maximum of 252 female and male patients with external anal sphincter weakness or sphincter damage suffering from F1 will be investigated to achieve 207 evaluable datasets. Patients are randomized to one of three groups: cell dose 1, cell dose 2, placebo (which consists of cell-free medium). Observation period is 6 months post treatment. All patients perform electrical stimulation for a total of 8 weeks, 4 weeks after bioney and prior to implantation and 4 weeks starting immediately after. | | ICTA company (CRO) /
University College
London Hospitals | N/A | 5- In follow-
up | Phase II | 2013 | 252 | Skeletal
Muscle | Other | No | | Autologous | Musculoskelet
al | Faecal
Incontinence | Dr. Rainer Marksteiner,
Chief Executive Officer,
Innovacell
Biotechnologie AG,
Mitterweg 24, 6020
Innsbruck, Austria | | Cook
MyoSite,
USA | A Prospective Nonrandomized
Study of Autologous Muscle
Derived Cell (AMDC)
Transplantation for Treatment
of Fecal Incontinence | The aim of this clinical study is to investigate the safety and feasibility of Autologous Muscle Derived Cells (AMDC; a preparation of a patient's own cells injection into the anal sphincter for treatment of patients with fecal incontinence. | NCT01600755 | Royal Hospital of
London, National Centre
for Bowel Research &
Surgical Innovation | N/A | 3- Recruiting | Phase I/II | 2012 | 50 | Skeletal
Muscle | Other | No | | Autologous | Musculoskelet
al | Faecal
Incontinence | Yahira Baez-Santos,
Travis Conley
travis.conley@cookmedi
cal.com | | University
College
London | Autologous Stem Cells in Achilles
Tendinopathy (ASCAT) | This study is looking at a new treatment, using the patient's own stem cells (the repair cells of the body), to see whether this can help reduce pain and promote healing of the Achilles tendon, without side effects. | NCT02064062 | University College
London Hospital | Royal National Orthopaedic
Hospital | 3- Recruiting | Phase II | 2015 | 10-Jan | Mesenchy
mal
stem/strom
al cells | Other | No | | Autologous | Musculoskelet
al | Achilles
Tendinopathy | Andrew Golberg
Royal National
Orthopaedic Hospital
andy.goldberg@rnoh.nh | | University
College
London | COBALT: Evaluation of CAR19 T-
cells as an Optimal Bridge to
Allogeneic Transplantation | The purpose of this study is to administer novel cluster of differentiation antigen 19 (CD19) specific Chimeric Antigen Receptor T-cells (CAR19 T-cells) to patients with relapsed or resistant Diffuse Large B Cell Lymphoma (DLBCL) to assess the safety and efficacy of this strategy as a bridge to allogeneic transplantation | NCT02431988 | University College
London Hospital | University College London
Hospital, London | 3- Recruiting | Phase I | 2015 | 12 | T cells | Blood | Yes ex-vivo | Lentiviral
vector | Autologous | Cancer
(Haematology) | Diffuse Large B-
Cell Lymphoma | COBALT trial
coordinator at
ctc.cobalt@ucl.ac.uk | | University
College
London | CARPALL: Immunotherapy with
CD19 CAR redirected T-cells for
high risk, relapsed paediatric
CD19+ acute lymphoblastic
leukaemia and other haematological
malignancies. | The purpose of this study is to evaluate the safety, efficacy and duration of response of a novel cluster of differentiation antigen 19 (CD19) specific Chimeric Antigen Receptor T-cells (CD19CAR T-cells) to paediatric patients with high risk acute lymphoblastic leukaemia (ALL) and other haematological malignancies. | NCT02443831 | Leading: 1-University
College London Institute
of Child Health/Great
Ormond St Hospital.
Collaborators: 2-
University College
London Hospitals 3-
Royal Manchester
Children's Hospital | Great Ormond Street Hospital for Children London, United Kingdom, WC1N 3JH University College London Hospital London, United Kingdom; Royal Manchester Children's | 3- Recruiting | Phase I/II | 2016 | 18 | T cells | Blood | Yes ex-vivo | Lentiviral
vector | Autologous | Cancer
(Haematology) | Paediatric
Acute
Lymphoblastic
Leukaemia and
other
haematological
malignancies
(e.g. Burkitt's
lymphoma) | CARPALL trial
coordinator at
ctc.carpall@ucl.ac.uk | | The
University
of
Edinburgh | Macrophage Therapy for Liver
Cirrhosis (MATCH) | A multicentre, phase I/II trial of repeated infusions of autologous CD14+ monocyte-derived macrophages in patients with liver cirrhosis | 2015-000963-15 | The University
of
Edinburgh, SNBTS, NHS
Lothian, Cell Therapy
Catapult | Edinburgh Royal Infirmary | 3- Recruiting | Phase I/II | 2016 | 74 | Other | Blood | No | | Autologous | Liver | Advanced Liver
Cirrhosis | Prof Stuart Forbes University of Edinburgh Centre for Regenerative Medicine MRC Edinburgh EH16 4TJ UNITED KINGDOM stuart.forbes@ed.ac.uk | | IRCCS -
Istituto di
Ricerche
Farmacologi
che Mario
Negri | Novel Stromal Cell Therapy for
Diabetic Kidney Disease
(NEPHSTROM) | A multicentre, phase 1 and 2 trial to investigate, primarily, the safety, feasibility and tolerability and, secondarily, the preliminary efficacy of an allogeneic bone marrow-derived Mesenchymal Stromal Cell (MSC) therapy (ORBCEL-M) in study subjects with type 2 diabetes (T2D) and progressive diabetic kidney disease (DKD). | NCT02585622
EudraCT: 2016-
000661-23 | Leiden University Medical Center, Leiden, The Netherlands NHS Blood and Transplant, Liverpool, UK, ASST Papa Giovanni XXIII Bergamo, Italy IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy National University of Ireland, Galway, Ireland. | Belfast Health and Social Care Trust - Belfast City Hospital Belfast, United Kingdom University Hospital Birmingham NHS Foundation Trust - Queen Elizabeth Medical Centre Birmingham, United Kingdom | 2- In set-up | Phase I/II | 2017 | 48 | Mesenchy
mal
stem/strom
al cells | Bone
marrow | No | | Allogeneic | Renal and
Urogenital | Diabetic kidney
disease | Peter Maxwell, MD
(Belfast City Hospital)
Paul Cockwell, MD
(Queen Elizabeth Medial
Centre) | | Name of
Sponsor | Title | Project Summary | Clinical Database
Numbers | Lead Institution/
Company and
Collaborator Partners | United Kingdom Site(s) | Clinical
Trial Status | Trial
Phase | Year
Trial
Starte | Recruitme
nt Target | Cell Type | Cell
Source | Gene
Modificat
ion/
Gene | If applicable,
type of virus
vector used | Autologou
s/
Allogeneic | Disease Area | Indication | Contact | |---|--|--|---------------------------------|--|--|--------------------------|----------------|-------------------------|------------------------|---------------------------------------|----------------|-----------------------------------|--|-------------------------------|--------------------------------------|---|---| | Kiadis
Pharma,
Netherlands | Safety and Efficacy of Two Doses of
ATIR101, a T-lymphocyte Enriched
Leukocyte Preparation Depleted of
Host Alloreactive T-cells, in
Patients With a Hematologic
Malignancy Who Received a
Hematopoietic Stem Cell
Transplantation From a
Haploidentical Donor | An Exploratory, Open-label, Multicenter Study to Evaluate the Safety and Efficacy of a Two-dose Regimen of ATIR101, a T-lymphocyte Enriched Leukocyte Preparation Depleted ex Vivo of Host Alloreactive T-cells (Using Photodynamic Treatment), in Patients With a Hematologic Malignancy, Who Received a CD34-selected Hematopoietic Stem Cell Transplantation From a Haploidentical Donor | NCT02500550 | Kiadis Pharma,
Netherlands | Heartlands Hospital Not yet recruiting Birmingham, United Kingdom, B9 5SS Hammersmith Hospital Recruiting London, United Kingdom, W12 ONN | 3- Recruiting | Phase II | 2015 | 15 | CD34
and/or
CD133
stem cells | Bone
marrow | No | | Allogeneic | Cancer
(Haematology) | Acute Myeloid
Leukaemia
(AML), Acute
Lymphoblastic
Leukaemia
(ALL) and
Myelodysplastic
Syndrome
(MDS) | clinicaltrials@kiadis.co
m | | CellProthera
, France | EXpanded CELL ENdocardiac
Transplantation (EXCELLENT) | A Multicentric Controlled Priase 17 HD Study Evaluating the Salety and the Efficacy of in Vitro Expanded Peripheral Blood CD34+ Stem Cells Output by the StemXpand® Automated Process, and Injected in Patients With an Acute Myocardial Infarction and a Left Ventricle Ejection Fraction (LVEF) Remaining Below or Equal to 45% After PTCA and Stent(s) Implantation Versus Standard | NCT02669810 | CellProthera, France | University of Edinburgh
Leeds University & Leeds
Teaching Hospitals NHS
Trust
Newcastle University | 3- Recruiting | Phase I/II | 2016 | 44 | CD34
and/or
CD133
stem cells | Bone
marrow | No | | Autologous | Cardiovascular | Acute
Myocardial
Infarction | Contact: Anthony
Criquet, MD | | Great
Ormond
Street
Hospital for
Children
NHS
Foundation
Trust | Phase I Study of Ex-vivo
Lentiviral Gene Therapy for the
Inherited Skin Disease Netherton
Syndrome | Netherton Syndrome is a serious skin disorder caused by damage in a gene called SPINK5. This gene controls the formation of a protein called LEKTI, which important for skin barrier function. The investigators have been developing a gene therapy approach using a disabled virus (vector) to carry a functional copy of the SPINK5 gene into skin stem cells. In this trial the investigators propose grafting of autologous epidermal sheets generated from genetically modified skin stem cells for the treatment of patients with Netherton Syndrome. | NCT01545323 | Great Ormond Street
Hospital for Children
NHS Foundation Trust | Guy's and St Thomas NHS
Trust, London
Great Ormond Street Hospital
for Children NHS Trust ,
London | 3- Recruiting | Phase I | 2014 | 5 | Other | Tissue | Yes ex-vivo | Lentiviral
vector | Autologous | Skin | Netherton
Syndrome | Havinder Hara Senior Clinical Project Manager UCL Great Ormond Street Institute of Child Health Molecular and Cellular Immunology Section 30 Guildford Street London WC1N 1EH | | Genethon | Phase I/II Clinical Trial of
Haematopoietic Stem Cell Gene
Therapy for the Wiskott-Aldrich
Syndrome | This is a phase I/II study to evaluate the safety and efficacy of Hematopoietic
Stem Cell gene therapy for the Wiskott-Aldrich Syndrome | NCT01347242 | Great Ormond Street
Hospital NHS Foundation
Trust, London, UK
UCL Institute of Child
Health, London UK | Great Ormond Street Hospital Recruiting London, United Kingdom, WC1N 1EH Royal Free Hospital Recruiting London, United Kingdom, WC1N 1EH | 3- Recruiting | Phase I/II | 2011 | 5 | CD34
and/or
CD133
stem cells | Bone
marrow | Yes ex-vivo | Lentiviral
vector | Autologous | | Wiskott-Aldrich
Syndrome
(WAS) | Prof Adrian Thrasher
UCL ICH | | Great Ormond Street Hospital for Children NHS Foundation Trust | Gene Therapy for X-linked Severe
Combined Immunodeficiency
(SCID-X1) | X-linked severe combined immunodeficiency (SCID-X1) is an inherited disorder that results in failure of development of the immune system in boys. This trial aims to treat SCID-X1 patients using a self-inactivating (SIN) gammaretroviral vector to replace the defective gene. | NCT01175239 | Great Ormond Street
Hospital NHS Foundation
Trust, London, UK
UCL Institute of Child
Health, London UK | Great Ormond Street Hospital
for Children NHS Trust
London, | 5- In follow-
up | Phase I/II | 2011 | 1 | CD34
and/or
CD133
stem cells | Bone
marrow | Yes ex-vivo | Self-
inactivating
(SIN)
Gammaretrovir
al Vector | Autologous | Inflammatory
and immune
system | X-linked Severe
Combined
Immunodeficie
ncy | Prof Adrian Thrasher
UCL ICH | | Genethon | A Phase I/II, Non Randomized,
Multicenter, Open-label Study of
g1xcgd (Lentiviral Vector
Transduced CD34+ Cells) in
Patients With X-linked Chronic
Granulomatous Disease | X-linked chronic granulomatous disease (X-CGD) is a rare genetic disorder, which affects boys. The goal of this trial is to evaluate the safety and efficacy of transplantation of autologous CD34+ cells transduced with lentiviral vector containing XCGD gene in X-CGD patients. | NCT01855685 | Great Ormond Street
Hospital NHS Foundation
Trust, London, UK
UCL Institute of Child
Health, London UK | University College London Hospital (UCLH) Recruiting London, United Kingdom, NW1 2PG Royal Free Hospital (RFH) Recruiting London, United Kingdom, NW3 2QG Great Ormond Street Hospital NHS Foundation Trust London, United Kingdom | 3- Recruiting | Phase I/II | 2013 | 5 | CD34
and/or
CD133
stem cells | Bone
marrow | Yes ex-vivo | Lentiviral
vector | Autologous | Inflammatory
and immune
system |
X-Linked
Chronic
Granulomatous
Disease (X-
CGD) | Prof Adrian Thrasher
UCL ICH | | Bellicum
Pharmaceut
icals, USA | in Pediatric Patients Affected by | blood cell disorders who are having a blood stem cell transplant depleted of T cell receptor (TCR) alfa and beta cells that comes from a partially matched family donor. The study will assess whether T cells, from the family donor, that are specially grown in the laboratory and given back to the patient along with the stem cell transplant can help the immune system recover faster after transplant. As a safety measure these T cells have been programmed with a self- | NCT02065869 | Bellicum
Pharmaceuticals, USA | Institute of Child Health & Great Ormond Street Hospital, London The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle | 3- Recruiting | Phase I | 2014 | 180 | T cells | Blood | Yes ex-vivo | Retroviral
vector
expressing
suicide gene
iCasp9 | Allogeneic | Blood | Hematological
malignancies | Paediatric Research Nurse Great North Childrens Hospital Ward 1B, Research Unit Queen Victoria Road | | | A Prospective Randomized
Controlled Multicenter Phase-III
Clinical Study to Evaluate the Safety
and Effectiveness of NOVOCART®
3D Plus Compared to the Standard
Procedure Microfracture in the
Treatment of Articular Cartilage
Defects of the Knee | Safety and Effectiveness Study to Evaluate NOVOCART® 3D Plus Compared to the Microfracture to Treat Articular Cartilage Defects of the Knee (N3D) | 2011-005798-22 /
NCT01656902 | Tetec AG, Germany | Royal Devon and Exeter
Hospital
Exeter, United Kingdom, EX2
5DW | 3- Recruiting | Phase III | 2012 | 261 | Chondrocyt
es | Tissue | No | | Autologous | Bone and
cartilage | Articular
cartilage defects
of the knee | Thomas Gwinner
Alexandra Kirner | | Name of
Sponsor | Title | Project Summary | Clinical Database
Numbers | Lead Institution/
Company and
Collaborator Partners | United Kingdom Site(s) | Clinical
Trial Status | Trial
Phase | Year
Trial
Starte
d | Recruitme
nt Target | Cell Type | Cell
Source | Gene
Modificat
ion/
Gene | If applicable,
type of virus
vector used | | Disease Area | Indication | Contact | |---|---|---|---|---|---|--------------------------|----------------|------------------------------|------------------------|---|-------------------------------------|-----------------------------------|--|------------|--------------------------------------|---|---| | Institut de
Recherches
Internation
ales Servier,
France | A phase 1, open label, non-
comparative, monocenter study to
evaluate the safety and the ability of
UCART19 to induce molecular
remission in paediatric patients
with relapsed /refractory B acute
lymphoblastic leukaemia
(UCART19_PALL) | This study aims at evaluating the safety and efficacy of UCART19, an allogeneic CAR T-cell product for treatment of CD19-expressing hematological malignancies, gene edited with TALEN®, to induced molecular remission in pediatric patients with relapsed or refractory CD19-positive B-cell acute lymphoblastic leukemia (B-ALL) ahead of planned allogeneic hematopoietic stem cell transplantation (allo-HSCT). | NCT02808442 | Institut de Recherches
Internationales Servier,
France | UCL Great Ormond Hospital,
London, United Kingdom | 3- Recruiting | Phase I | 2016 | 10 | T cells | Bone
marrow | Yes ex-vivo | TALEN® gene
editied cells | Autologous | Cancer
(Haematology) | B-cell acute
lymphoblastic
leukemia | Institut de Recherches
Internationales Servier
clinicaltrials@servier.co
m | | St Georges
University
London | Clinical development of erythrocyte
encapsulated thymidine
phosphorylase - a therapy for
mitochondrial
neurogastrointestinal
encephalomyopathy | The aim of this trial is to evaluate erythrocyte encapsulated thymidine phosphorylase (EE-TP) in patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Conducting a multi-centre (pan European), open label, multiple ascending dose, Phase II trial in 10 patients with MNGIE, over 36 months | | Orphan Technologies | N/A | 1- In planning | Phase II | 2016 | 10 | Other | Other | No | | Autologous | Metabolic and
Endocrine | Mitochondrial
neurogastrointe
stinal
encephalomyop
athy (MNGIE) | Bridget Bax
bebax@sgul.ac.uk | | Pfizer, UK | Phase 1, Open-label, Safety And
Feasibility Study Of Implantation
Of Pf-05206388 (Human
Embryonic Stem Cell Derived
Retinal Pigment Epithelium Living
Tissue Equivalent) In Subjects With
Acute Wet Age Related Macular
Degeneration and Recent Rapid
Vision Decline | A Study Of Implantation Of Retinal Pigment Epithelium In Subjects With Acute
Wet Age Related Macular Degeneration | NCT01691261 | University College,
London | Moorfields Eye Hospital NHS
Foundation Trust, London | 4- Suspended | Phase I | 2015 | 10 | Retinal | Human
embryon
ic stem
cell | No | | Allogeneic | Eye | Acute Wet Age
Related
Macular
Degeneration | Peter T Loudon, Pfizer | | Astellas
Institute for
Regenerativ | Safety and Tolerability of Sub-
retinal Transplantation of Human
Embryonic Stem Cell Derived | The purpose of this study is to evaluate the safety and tolerability of hESC-RPE cellular therapy in patients with advanced SMD over a five-year period following the surgical procedure to implant the cells. This study is a long-term, extension of a Phase I/II, open-label, non-randomized, 4-cohort, multi-center clinical trial (referred to as the core trial or core protocol) in which a maximum of 12 SMD patients were transplanted with sequential doses of hESC-RPE cells, starting at a dose of 50,000 hESC-RPE cells transplanted and increasing to a maximum dose of 200,000 hESC-RPE cells transplanted. | NCT02941991 | Astellas Institute for
Regenerative Medicine | Moorefields Eye Hospital NHS Foundation Trust, London, United Kingdom, EC1V2PD Newcastle on Tyne NHS Foundation Trust Newcastle upon Tyne, United Kingdom, NE7 7DN | 5- In follow-
up | Phase I/II | 2013 | 11 | Retinal | Human
embryon
ic stem
cell | No | | Allogeneic | Eye | Stargardt's
Macular
Dystrophy | medinfo.gb@astellas.co
m | | Cynata
Therapeutic
s Limited | An Open-Label Phase 1 Study to
Investigate the Safety and Efficacy
of CYP-001 for the Treatment of
Adults With Steroid-Resistant
Acute Graft Versus Host Disease | The purpose of this study is to assess the safety, tolerability and efficacy of two infusions of CYP-001 in adults with steroid-resistant GvHD. This is a multicentre, open label, dose escalation study to assess the safety, tolerability and efficacy of two infusions of CYP-001, in adults who have steroid-resistant GvHD. Participants will receive standard of care treatment throughout the study, according to local procedures. The first eight participants will be enrolled in Cohort A and receive a CYP-001 dose of 1 million cells per kg, up to a maximum dose of 100 million cells, on Day 0 and Day 7. Subject to a safety review of data from Cohort A, an additional eight participants will be enrolled into Cohort B and receive a CYP-001 dose of 2 million cells/kg, up to a maximum dose of 200 million cells, on Day 0 and Day 7. The primary evaluation period concludes for each participant 100 days after the first dose of CYP-001. Participants will have study visits on Days 0, 3, 7, 14, 21, 28, 60 and | NCT02923375 | Cynata Therapeutics
Limited | NHS Foundation Trust
Recruiting
Manchester, United Kingdom | 3- Recruiting | Phase I | 2016 | 16 | Mesenchy
mal
stem/strom
al cells | pluripote | Yes ex-vivo | | Allogeneic | Inflammatory
and immune
system | Steroid-
Resistant Acute
Graft Versus
Host Disease | Jennifer Jardine | | Belfast
Health and
Social Care
Trust | Repair of Acute Respiratory
Distress Syndrome by Stromal Cell
Administration (REALIST):
An
Open Label Dose Escalation Phase 1
Trial Followed by a Randomized,
Double-blind, Placebo-controlled
Phase 2 Trial | Acute Respiratory Distress Syndrome (ARDS) causes the lungs to fail due to the collection of fluid in the lungs (pulmonary oedema). ARDS is common in severely ill patients in Intensive Care Units and is associated with a high mortality and a high morbidity in those who survive. There is a large economic burden with direct healthcare costs, but also indirectly due to the impact on the carer and patient through the patients inability to return to full time employment. There is little evidence for effective drug (pharmacological) treatment for ARDS. There is increasing information that mesenchymal stem cells (MSCs) might be important in treating ARDS. REALIST will investigate if a single infusion of MSCs will help in the treatment of ARDS. The first step will be to first of all determine what dose of MSCs is safe and then divide patients suffering from ARDS into two groups, one of which will get MSCs and the other a harmless dummy (or placebo) infusion, who will then be followed up to | NCT03042143
Eudract 2017-
000584-33 | Belfast Health and Social
Care Trust
Queen's University,
Belfast
Northern Ireland Clinical
Trials Unit | Belfast Health and Social Care
Trust, Royal Hospitals | 2- In set-up | Phase I/II | 2017 | 84 | Mesenchy
mal
stem/strom
al cells | Other | No | | Allogeneic | Other | Acute
Respiratory
Distress
Syndrome | Danny F McAuley, MD
Cecilia O'Kane, Ph.D | | Bluebird Bio | A Phase 3 Single Arm Study Evaluating the Efficacy and Safety of Gene Therapy in Subjects With Transfusion-dependent β- Thalassemia, Who do Not Have βο/βο Genotype, by Transplantation of Autologous CD34+ Stem Cells Transduced Ex Vivo With a Lentiviral βΑ-Τ87Q- Globin Vector in Subjects ≥12 and ≤50 Years of Age | This is a single-arm, multi-site, single-dose, Phase 3 study in approximately 15 subjects ≥12 and ≤50 years of age with transfusion-dependent β-thalassemia (TDT), also known as β-thalassemia major, who do not have a β0 mutation at both alleles of the hemoglobin β (HBB) gene. The study will evaluate the efficacy and safety of autologous hematopoietic stem cell transplantation (HSCT) using LentiGlobin BB305 Drug Product. | NCT02906202 | Bluebird Bio | London | 2- In set-up | Phase III | 2016 | 15 | CD34
and/or
CD133
stem cells | Bone
marrow | Yes ex-vivo | Lentiviral βA-
T87Q-Globin
Vector | Autologous | Blood | Transfusion-
Dependent β-
Thalassemia | <u>clinicaltrials@bluebirdbi</u>
<u>o.com</u> | | Name of
Sponsor | Title | Project Summary | Clinical Database
Numbers | Lead Institution/
Company and
Collaborator Partners | United Kingdom Site(s) | Clinical
Trial Status | Trial
Phase | Year
Trial
Starte | Recruitme
nt Target | Cell Type | Cell
Source | Gene
Modificat
ion/
Gene | If applicable,
type of virus
vector used | s/ | Disease Area | Indication | Contact | |------------------------------------|---|--|--|--|---|--------------------------|----------------|-------------------------|------------------------|-----------|----------------|-----------------------------------|---|------------|-------------------------|--|---| | Servier | Phase I, Open Label, Dose- escalation Study to Evaluate the Safety, Expansion, Persistence and Biological Activity of a Single Dose of UCART19 (Allogeneic Engineered T-cells Expressing Anti- CD19 Chimeric Antigen Receptor), Administered Intravenously in Patients With Relapsed or Refractory CD19 Positive B-cell Acute Lymphoblastic Leukaemia (B- ALL) or Chronic Lymphocytic Leukaemia (CLL) | The purpose of this study is to evaluate the safety and tolerability of several doses of UCART19 in patient with relapsed / refractory (R/R) acute lymphoblastic leukaemia (ALL) or chronic lymphocytic leukaemia (CLL) | NCT02746952 | Servier | King's College Hospital NHS
Foundation Trust | 3- Recruiting | Phase I | 2016 | 12 | T cells | | Yes ex-vivo | | Allogeneic | Cancer
(Haematology) | Acute Lymphoblastic Leukaemia (ALL) and Chronic Lymphocytic Leukaemia (CLL) (CALM) | Institut de Recherches
Internationales Servier | | Servier | A Phase 1, Open Label, Non-
comparative, Monocenter Study to
Evaluate the Safety and the Ability
of UCART19 to Induce Molecular
Remission in Paediatric Patients
With Relapsed/Refractory B Acute
Lymphoblastic Leukaemia | This study aims at evaluating the safety and ability of UCART19 to induce molecular remission in pediatric patients with relapsed or refractory CD19-positive B-cell acute lymphoblastic leukemia (B-ALL) ahead of planned allogeneic hematopoietic stem cell transplantation (allo-HSCT). | NCT02808442 | Servier | UCL Great Ormond Hospital | 3- Recruiting | Phase I | 2016 | 10 | T cells | | Yes ex-vivo | | Allogeneic | Cancer
(Haematology) | Relapsed/Refra
ctory B Acute
Lymphoblastic
Leukemia
(PALL) | Institut de Recherches
Internationales Servier | | University
of Oxford | Gene Therapy for Blindness Caused
by Choroideremia | An Open Label Dose Escalation Phase 1 Clinical Trial of Retinal Gene Therapy
for Choroideraemia Using an Adeno-associated Viral Vector (AAV2) Encoding
Rab-escort Protein 1 (REP1) | NCT01461213 | COHADOFATORS: Oxford University Hospitals NHS Trust Moorfields Eye Hospital NHS Foundation Trust University College, London Central Manchester University Hospitals NHS Foundation Trust | Moorneids Eye Hospital NHS Foundation Trust St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trusts Oxford Radcliffe Hospitals NHS Trust | 5- In follow-
up | Phase I | 2011 | 14 | | | Yes in-vivo | rAAV2 | | Eye | Choroideraemia | Robert E MacLaren | | Oxford
BioMedica | Determine the Long Term Safety,
Tolerability and Efficacy of | This study is designed to determine the long term (10 years) safety, tolerability and efficacy of ProSavin, a lentiviral based vector carrying three genes that encode the key enzymes for the synthesis of dopamine, in patients with bilateral, idiopathic Parkinson's disease who received the ProSavin in previous study (PS1/001/07). | NCT01856439 | Henri Mondor Hospital
Paris, France
Addenbrookes Hospital
Cambridge | Addenbrookes Hospital
Cambridge | 5- In follow-
up | Phase I/II | 2011 | 15 | | | Yes in-vivo | Lentiviral
vector | | Neurological | Parkinson's
Disease | Oxford BioMedica | | GenSight
Biologics | A Kandomized, double-masked,
sham-controlled clinical trial to
evaluate the efficacy of a single
intravitreal injection of GSO10 in
subjects affected for 6 months or
less by Leber Hereditary Optic
Neuropathy (LHON) due to the | The goal of this study is to assess the efficacy of GS010, a gene therpy, in improving the visual outcome in patients up to 6 months from onset of Leber Hereditary Optic Neuropathy (LHON) due to the ND4 mitochondrial mutation (RESCUE) | NCT02652767 | GenSight Biologics,
France | Moorfields Eye Hospital NHS
Foundation Trust, London | 3- Recruiting | Phase III | 2016 | 36 | | | Yes in-vivo | 2 (rAAV2/2)
containing the | | Eye | Leber
Hereditary
Optic
Neuropathy
(LHON) | Lauren Leitch-Devlin
Moorfields Eye Hospital
NHS Foundation Trust | | GenSight
Biologics | Rafidottilzed, published, with skeu, Sham-Controlled Clinical Trial to Evaluate the Efficacy of a Single Intravitreal Injection of GS010 in Subjects Affected for More Than 6 Months and To 12 Months by LHON Due to the G1778A | The goal of this study is to assess the efficacy of GS010, a gene therpy, in improving the visual outcome in patients with LHON due to the G11778A ND4 mitochondrial mutation when vision loss is present for more than six months and up to one year (REVERSE) | NCT02652780 | GenSight Biologics,
France | Moorfields Eye Hospital NHS
Foundation Trust, London | 5- In follow-
up | Phase III | 2016 | 36 | | | Yes in-vivo | recombinant
adeno-
associated viral
vector serotype
2 (rAAV2/2)
containing the | | Eye | Leber
Hereditary
Optic
Neuropathy
(LHON) | Lauren Leitch-Devlin
Moorfields Eye Hospital
NHS Foundation Trust | | BioMarin
Pharmaceut
ical | Gene Therapy Study in Severe
Haemophilia A Patients | A Phase 1/2, Dose-Escalation Safety, Tolerability and Efficacy Study of BMN
270, an Adenovirus-Associated Virus Vector-Mediated Gene Transfer of Human
Factor VIII in Patients With Severe Haemophilia A |
NCT02576795
EudraCT: 2014-
003880-38 | BioMarin Pharmaceutical | Hampshire Hospitals NHS Foundation Trust, Basingstoke Queen Elizabeth Hospital Birmingham University Hospitals Bristol NHS Foundation Cambridge University Hospitals NHS Foundation Greater Glasgow Health Board Barts Health NHS Trust, London | 3- Recruiting | Phase I/II | 2015 | 15 | | | Yes in-vivo | AAV | | Blood | Haemophilia A | BioMarin
Pharmaceutical | | Ionis
Pharmaceut
icals, Inc. | A Randomized, Double-blind,
Placebo-controlled Study to
Evaluate the Safety, Tolerability,
Pharmacokinetics and
Pharmacodynamics of Multiple
Ascending Doses of Intrathecally
Administered ISIS 443139 in
Patients With Early Manifest
Huntington's Disease | This study will test the safety, tolerability, pharmacokinetics and pharmacodynamics of multiple ascending doses of IONIS-HTTRx administered intrathecally to adult patients with early manifest Huntington's Disease. | NCT02519036 | Ionis Pharmaceuticals,
Inc. | University Hospitals Birmingham Cambridge University Hospital University College London University Hospital Wales University of Manchester, St. Mary's Hospital | 3- Recruiting | Phase I/II | 2015 | 44 | | | Yes in-vivo | Single stranded
antisense
oligonucleotide
(ASO) | | Neurological | Huntington's
disease | patients@ionisph.com | ## Cell and Gene Therapy Catapult UK Clinical Trials Database 2017 | Name of
Sponsor | Title | Project Summary | Clinical Database
Numbers | Lead Institution/
Company and
Collaborator Partners | United Kingdom Site(s) | Clinical
Trial Status | Trial
Phase | Year
Trial
Starte
d | Recruitme
nt Target Cell T | ype Cell Modifica Source ion/ Gene | If applicable,
type of virus
vector used | s/ | Disease Area | Indication | Contact | |----------------------------------|--|--|------------------------------|---|--|--------------------------|----------------|------------------------------|-------------------------------|------------------------------------|--|----|--------------|----------------------------------|--| | MeiraGTx
UK II Ltd | An Open Label, Multi-centre, Phase
I/II Dose Escalation Trial of a
Recombinant Adeno-associated
Virus Vector (AAV2/8-
hCARp.hCNGB3) for Gene Therapy
of Adults and Children With
Achromatopsia Owing to Defects in
CNGB3 | from birth or early infancy. The condition is currently untreatable, but there is a
real possibility that a gene therapy could offer a significant benefit in terms of
improved sight and quality of life (QOL), based on our own and others | NCT03001310 | EMAS
Syne Qua Non Limited | Moorfields Eye Hospital NHS
Foundation Trust, London,
UK | 3- Recruiting | Phase I/II | 2016 | 18 | Yes in-viv | AAV2/8 viral
vector | | Eye | Achromatopsia | Julie Bakobaki, MSc
Anna Morka, MSc | | University
College
London | An Open-label, Multi-centre, Phase
I/II Dose Escalation Trial of an
Adeno Associated Of an Adeno-
Associated Virus Vector (AAV2/5-
OPTIRPE65) for Gene Therapy of
Adults And Children With Retinal
Dystrophy Associated With Defects
in RPE65 (LCA) | Western world. There are currently no effective treatments. Leber congenital amaurosis (LCA) is a severe, early-onset form of inherited retinal degeneration involving both rod and cone photoreceptors. LCA is caused by mutations in one of at least 19 different genes. Mutations in RPE65, which is expressed in the retinal pigment epithelium (RPE), are responsible in 3 to 16 % of people | NCT02781480 | Medical Research Council
MeiraGTx UK II Ltd | Moorfields Eye Hospital NHS
Foundation Trust Recruiting
London, United Kingdom,
EC1V 2PD | 3- Recruiting | Phase I/II | 2016 | 27 | Yes in-viv | AAV2/5-
OPTIRPE65 | | Eye | Leber
Congenital
Amaurosis | James Bainbridge | | MeiraGTx
UK II Ltd | Long-term Follow-up Study of
Participants Following an Open
Label, Multi-centre, Phase I/II Dose
Escalation Trial of an Adeno-
associated Virus Vector (AAV2/5-
OPTIRPE65) for Gene Therapy of
Adults and Children With Retinal
Dystrophy Owing to Defects in
RPE65 (LCA2) | This study is a longer-term follow-up study for patients who have been administered AAV2/5-OPTIRPE65 in the Phase I/II, open label, non-randomised, two-centre, dose escalation trial in adults and children with retinal dystrophy associated with defects in RPE65. The study is designed to collect data on longer-term safety and efficacy at 9-, 12-, 18-, 24-, 36-, 48- and 60-month time-points following AAV2/5-OPTIRPE65 administration. | NCT02946879 | Syne Qua Non Limited | Moorfields Eye Hospital NHS
Foundation Trust Recruiting
London, United Kingdom | 3- Recruiting | Phase I/II | 2016 | 27 | Yes in-viv | AAV2/5-
OPTIRPE65 | | Eye | Leber
Congenital
Amaurosis | Sophie Connor
Neruban Kumaran, Dr | | University
College,
London | GO-8: Gene Therapy for
Haemophilia A Using a Novel
Serotype 8 Capsid Pseudotyped
Adeno-associated Viral Vector
Encoding Factor VIII-V3 | Haemophilia A is an x-linked, life threatening bleeding disorder arising from defects in the coagulation factor VIII (FVIII) gene. Current treatment for haemophilia A, the commonest inherited bleeding disorder (prevalence of 1 in 5000 individuals) consists of life-long, 2-3X/week, intravenous injection of clotting factor concentrates, which is demanding, exceedingly expensive not widely available nor curative. In contrast, gene therapy offers the potential of a cure for haemophilia A as illustrated by our first unequivocal success in a related condition, haemophilia B. In that study the investigators showed that a single intravenous administration of a serotype 8 based adeno-associated virus, (AAV8) vector encoding the factor IX (FIX) gene resulted in stable (>6 years) therapeutic expression of FIX without long-lasting toxicity. The investigators plan to use the same AAV8 platform to evaluate a novel FVIII expression cassette. AAV2/8-HLP-FVIII-V3, in patient with haemophilia A. Extensive | | Medical Research Council | Royal Free Hospital London, United Kingdom, NW3 2QG Principal Investigator: Pratima Chowdary Sub-Investigator: Amit Nathwani Sub-Investigator: Edward Tuddenham | 2- In set-up | Phase I | 2016 | 18 | Yes in-viv | AAV2/8-HLP-
FVIII-V3 | | Blood | Haemophilia A | Thomas Roberts |