There are differences in data requirements between EMA approval and reimbursement assessments; the latter require evidence of comparative effectiveness vs SOC* *SOC: Standard-of-Care ### Reimbursed price for innovative therapies is subject to value-based assessments; these link price to the therapy's added-value #### PRINCIPLES OF VALUE-BASED ASSESSMENTS #### **Differentiating value** - Added-value defined in terms of clinical and economic terms - Comparative data against the SOC/BSC **per country** is required: - · Gold-standard: H2H RCT - Indirect comparisons may be leveraged - Meaningful comparative data from single arm trials can only be generated if: - o Quality historical control data is available - Natural history of disease is well known - Patient population homogenous - Modelled data may be acceptable in certain markets - o e.g. Extrapolations in the UK - For a given indication, "V" varies depending on therapeutic positioning If no comparable treatment and measures of outcome are available, manufacturers must work with KOLs to develop appropriate measures ## Various approaches are used to translate differentiating value to reimbursed price (depending on geography) Some frequently applied approaches include: - Budget impact analysis - Cost-effectiveness analysis - International price referencing #### Budget impact (BI) assessments are commonly used by payers to quantify the economic impact of introducing a novel therapy #### **Key drivers:** Change in costs per patient from displacing existing therapies (usually healthcare budget only) - Number of patients treated - Time horizon (≤5 years) | | B | UDGET IMPACT | | | | | | |---|------------|---|------------|------------|------------|------------|-------------| | Total Population of England | 50,542,505 | OBOLI IIII NOT | | | | | | | Target population p.a. | 1.000 | | | | | | | | SOC price per patient | £5,000 | Ilhic | tratino | ovom | nlar o | fa no | nel | | New Therapy price per patient | £6,000 | Illustrative exemplar of a novel budget neutral therapy | | | | | | | Probability of rehospitalisation with SOC | 2.00% | | · · | | | 10 | | | Probability of rehospitalisation with New Therapy | 1.00% | | | | | | | | Cost per rehospitalisation | £20,000 | | | | | | | | | | Year 0 | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | | Market share of New Therapy | | 0% | 20% | 40% | 60% | 80% | 100% | | SOC Costs | | £5,000,000 | £4,000,000 | £3,000,000 | £2,000,000 | £1,000,000 | £0 | | New Therapy Costs | | £0 | £1,200,000 | £2,400,000 | £3,600,000 | £4,800,000 | £6,000,000 | | Total Drug Costs | | £5,000,000 | £5,200,000 | £5,400,000 | £5,600,000 | £5,800,000 | £6,000,000 | | Rehospitalizations Avoided | | 0 | 10 | 20 | 30 | 40 | 50 | | Reduction in Rehospitalization Costs | | 0 | £200,000 | £400,000 | £600,000 | £800,000 | £1,000,000 | | Change in Costs | | | | | | | | | Change in Drug Costs | | £0 | £200,000 | £400,000 | £600,000 | £800,000 | £1,000,000 | | Change in Rehospitalization Costs | | £0 | -£200,000 | -£400,000 | -£600,000 | -£800,000 | -£1,000,000 | | Total Change in Costs | | £0 | £0 | £0 | £0 | £0 | £0 | ## In certain markets (e.g. UK, Canada, Australia, Nordic, Netherlands) the cost-utility framework is used to inform reimbursed price potential $ICER = \frac{Cost B - Cost A}{QALY B - QALY A}$ QALY = Life expectancy (*life years*) x Quality of life (*utility*) - The ICER informs price potential - UK ICER thresholds: - ≥500 patients: £20-30K (~50K CAD) - o For end-of-life up to £50K - For very rare conditions: ICER up to £300K (depending on magnitude of QALY gain) - It rewards for gains in life years and QoL - It covers a longer horizon (e.g. lifetime for chronic disease) - Can accommodate modelled data e.g. extrapolations to support long term claims ### Often price assessments in one country are influenced by price decisions in others **Cell and Gene Therapy** # How differentiating value is translated to reimbursed price varies by geography: BIG 5 EU EXEMPLAR Most commonly used levers by market | Levers | UK | France | Germany | Italy & Spain | | | |-----------------------|--|--|---|---|--|--| | 1 st order | Comparative clinical effectiveness of the novel therapy vs a relevant comparator in the given market | | | | | | | 2 nd order | Cost-utility Net Budget Impact threshold of £20M p.a. | ASMR1-3: International price referencing (EU4) + Cost-utility ASMR4-5: Domestic comparator price Price-volume agreements | With added benefit: Premium over the comparator Efficiency Frontier International price referencing (EU15) No added benefit: Domestic comparator price | With added benefit: Premium over the comparator + Budget Impact + International price referencing (cost-utility: minor lever) No added benefit: Domestic comparator price | | | ### Common challenges with ATMP supporting data at launch impacting reimbursement negotiations - Limited comparative effectiveness data against SOC/BSC due to: - o Unavailability of H2H comparative data - o Randomised placebo controlled trials may not be feasible in certain cases - Limits prospect for credible indirect comparisons - Meaningful comparative data from single arm trials can not be generated due to limitations with historical control data / natural history of disease is not well known/ patient population heterogeneous - Short-term data at launch - Uncertainty on maintenance of effect especially when value proposition is around longterm claims - Uncertainty on long-term safety - Statistical significance can be limited by small sample sizes - Surrogate rather than hard clinical outcomes - Magnitude of effect may be overestimated (NICE Regenerative Medicine Study, 2016) # Learning from the cell and gene-based cancer immunotherapies assessed by NICE so far | Therapy | Data uncertainty | Decision | | |--|--|--|--| | Sipuleucel-T (For asymptomatic or minimally symptomatic metastatic non-visceral hormone-relapsed prostate cancer for which chemotherapy is not yet clinically indicated) | Due to limitations with indirect comparison against lower cost oral abiraterone, superiority and therefore cost-effectiveness could not be established | Not recommended | | | Talimogene laherparepvec (For unresectable, regionally or distantly metastatic {Stage IIIB, IIIC and IVM1a} melanoma that has not spread to internal organs) | A reliable estimate of its
effectiveness compared with
SOC (systemically administered
immunotherapies) could not be
established | Restricted use; recommended only when treatment with systemically administered immunotherapies is not suitable | | ### Four complementary approaches for dealing with data uncertainty (a UK perspective) - 1. The "extrapolation process selection algorithm" by the Decision Support Unit of NICE on how survival data could be credibly extrapolated beyond trial duration - 2. Using outputs from the cost-utility framework to quantify payer uncertainty; modulate price to reduce impact of uncertainty for the payer - 3. Identify the managed entry agreement (MEA) that minimises uncertainty as per: - i. "Exploring the assessment and appraisal of regenerative medicines and cell therapy products", NICE, March 2016 - ii. "Framework for analysing risk in HTA and its application to MEAs", DSU, January 2016 - 4. Conditional Reimbursement: The Cancer Drug Fund The "extrapolation process selection algorithm" by NICE DSU* guides how survival data can be extrapolated beyond the trial observation period #### The need: - According to the NICE TA framework, it is mean rather than median survival that needs to inform the lifetime horizon of the cost-utility analysis - However such data tend not to be available at launch - Therefore estimates of entire survival distributions are required #### The objective: • The "extrapolation process selection algorithm" guides on how to best address the evidence gap through credible extrapolations #### The process: - Fitting and testing a range of survival models (regression frameworks) based on: - Internal validity (how well they fit to the observed data) - External validity (how plausible the extrapolated portions are) ^{*}NICE Decision Support Unit Technical Support Document 14: Survival analysis for economic evaluations alongside clinical trials – extrapolation with patient-level data, March 2013 Using the cost-utility framework, impact of data uncertainty on probability of being CE is quantifiable; price can then be modulated to minimise uncertainty # Two other outputs from the cost-utility framework can be used to inform uncertainty | Output | Value | | | | |---|---|--|--|--| | Incremental Net Health Effect (NHE) (expressed in QALYs) | Incremental NHE = [(Incremental Effectiveness) x (ICER threshold)] -[Incremental Costs] Measures whether the additional QALY gain from a therapy is large enough to justify its additional cost (over the SOC) Should be a positive value The larger, the more likely the adoption | | | | | Consequences of decision uncertainty (expressed in QALYs) | Measures the opportunity cost for the healthcare system if due to uncertainty, it adopts the less beneficial therapy Should be much smaller than the Incremental NHE The smaller the more likely the adoption | | | | Cell and Gene Therapy ## The three uncertainty metrics can be used to identify appropriate Managed Entry Agreements (MEAs) • MEA taxonomy: Price adjustments of various kinds (from straight discounts to performance based) with or without further evidence collection (RCTs, observational studies, further analysis of existing data) | Sce. | | | | | | | |--|---|---------|---------------------------|-------------------------------|---|-----------------------| | Sce. | nario | ICER | Incremental NHE
QALY * | Probability
Cost Effective | Consequences of decision uncertainty QALY * | Adoption
potential | | £100,000
acquisition
per patient | on cost | £50,000 | -55 | 50% | 300 | Very low | | 10% disc | ount | £45,000 | 200 | 65% | 250 | Low | | Pay-for-
perform
payment of
patients u
remission | only for | £40,000 | 250 | 70% | 100 | Possible | | Lifetime payment of | leasing:
on a
asis as long
remains | £35,000 | 1000 Max | 99.5%
imise | 2
Minimise | High | | | | | Mux | unuse | willillise | | ^{*}Based on end-of-life ICER threshold: £50,000 ### I. Balancing opportunities and challenges with MEAs: enabling implementation #### Areas of focus for performance-based MEAs: Feasible approaches to short and long-term patient follow-up Validated surrogates and/or hard outcomes to be measured Timely data analysis and adjustment to payments based on performance at individual patient or cohort level • E.g. The 60-day claim period for Velcade in MM was too tight resulting in missing claims Timescales for reassessment of coverage decisions Who is responsible for what: the role of the NHS, the manufacturer and/or third party organisations o Resource implications for the NHS and manufacturer (costs, timescales) ## II. Balancing opportunities and challenges with MEAs: achieving winwin agreements between manufacturers and payers Choosing between MEAs with similar effect on uncertainty Performance-based example: Rebates vs Annuities | | Mar | nufacturer | Payer | | | |-----------|----------------------------------|---|-----------------|--|--| | | Pros | Cons | Pros | Cons | | | Rebates | Faster revenue generation | Large Budget Impact (BI) limits access* | Price reduction | Is there a reliable process to inform timely rebates? Admin. burden | | | Annuities | Small BI enables
wider access | Slow revenue
generation; is it
commercially viable? | Reduced BI | Admin. burden | | ^{*}Proposed £20M annual net BI threshold over first 3 years post-launch ### The Cancer Drug Fund (CDF) and coverage with evidence development (effective as from July 2016) - Oncology specific - Following initial NICE review, when there is potential clinical benefit but uncertain cost-effectiveness, drug can be considered for funding within the CDF **for a time limited period** - Funding is subject to company agreeing to: - o A "commercial access arrangement" which is affordable within the available CDF budget - Price should result in an ICER ≤NICE threshold - o Fund the collection of a pre-determined data set, during a period normally ≤24 months - At the end of this period, NICE will undertake a review and issue either a 'recommended' or 'not recommended' for routine use decision ### Paradigm shift: The considerably higher cost of RegenMed necessitates earlier consideration of reimbursement matters Commercially viable profit margins are determined by manufacturing costs and reimbursed price Reimbursed price is proportionate to: - The magnitude of incremental benefit vs the SOC: - For the patient and the healthcare system - The cost of the displaced therapy (SOC) - For small molecules, lower manufacturing costs provide flexibility over commercially viable price thresholds - Demonstration of statistically significant incremental clinical benefit ≥MID often suffices - The considerably higher cost of RegenMed requires much greater incremental benefit - Therefore commercial risks are higher - Accounting for reimbursement considerations earlier and informing RegenMed R&D strategy accordingly, is of priority To secure commercial viability, robust value optimisation and market access strategies need to be developed; preparations should start prior to clinical development and continue in parallel Our HE&MA deliverables across the key stages of development (Pre-Clinical) (Phase I/II) (Phase III and beyond) Shaping early development optimisation Tactical pre-launch preparations #### Shape early development by identifying: - Room for innovation - Value maximising indication and therapeutic positioning - In order to select optimal 1st/follow-up indication and therapeutic position(s) - Key clinical and economic drivers of product value - o In order to inform TPP - Interrelationship between incremental benefit, reimbursed price, manufacturing costs and profit margins; in order to: - o Define product performance and manufacturing cost thresholds for commercial viability - Inform clinical and manufacturing strategy - o Define go: no go decision making criteria ### Subsequently market access stakeholder input should be sought to inform pricing and reimbursement strategy Our HE&MA deliverables across the key stages of development (Pre-Clinical) (Phase I/II) (Phase III and beyond) Shaping early optimisation Tactical pre-launch preparations Prior to embarking on pivotal trials, engage with key market access stakeholders in major healthcare markets to understand evidence requirements - o National/Regional/Local level payers - HTA bodies advising payers (e.g.NICE, SMC, HAS, G-BA, parallel EMA/HTA advice) - o PPIs (Physician Payer Influencers) Development of early pricing & reimbursement strategy - o "Value Story" - Clinical and economic evidence generation plan to support Value Story (RCT/observational/modelled data) - Vision on positioning, pricing & reimbursement potential - o Account for differences in markets access drivers across major healthcare markets - Strategies to address market access hurdles # Development of contingency plans in preparation for launch is key, especially when data uncertainty is high Our HE&MA deliverables across the key stages of development (Pre-Clinical) (Phase I/II) (Phase III and beyond) Shaping Early Development Optimisation Tactical pre-launch preparations #### Finalise: - Value Dossier including: - Value story and supporting clinical and economic evidence (customised to individual market requirements) - · Target price for each launch market - · Geographical launch sequence - Develop contingency planning: - Risk-sharing schemes - Minimise uncertainty - Ensure implementability - Ensure commercial viability - Post-launch evidence generation plans