

The next generation of AAV analytics

Tony Bou Kheir Senior Analytical Scientist

Development of AAV therapeutics KTN - Cambridge 30 Jan 2019

Who we are

Part of a **world-leading network** of technology and innovation centres

Provide access to unique technical **facilities** and **expertise** to help adopt, develop and exploit innovations

Bridge the gap between businesses, academia, research and government

Were established by Innovate UK as a **not-for profit**, independent centre

It is our vision for the **UK** to be **a global leader** in the development, delivery and commercialisation of cell and gene therapies.

Where **businesses can start, grow and confidently develop** advanced therapies, delivering them to patients rapidly and effectively.

Who we are

Presentation workflow

Quantity – vector genome measure

Quantity – vector genome titre

Traditional methods

Quantitative real-time PCR (qPCR)

- Primer and probes targeting gene of interest and/or ITRs
- Use of a digested plasmid as a standard curve

Limitations

- Highly sensitive to PCR inhibitors viral proteins and/or vector diluent → decrease in amplification efficiency → Under-estimation of viral titre
- 2. Bias from amplification efficiency especially if targeting ITR region \rightarrow under-estimation of viral titre
- 3. Bias introduced from the standard curve amplification of dsDNA vs ssDNA \rightarrow Over-estimation of viral titre
- 4. Steps above → High inter/intra-assay variability

Quantity – vector genome titre

Aim

Develop a robust, accurate in-house method for measuring AAV2 vector genomes (and AAV2 derived serotypes)

qPCR alternatives - ddPCR

Scope

qPCR vs ddPCR

- 1. Highly sensitive to PCR inhibitors viral proteins and/or vector diluent → decrease in amplification efficiency → Under-estimation of viral titre
- ✓ Less sensitive to PCR inhibitors → suitable for in process vector genome measurement
- 2. Bias from amplification efficiency especially if targeting ITR region \rightarrow under-estimation of viral titre
- ✓ End product measurement less dependent on amplification efficiency → Suitable for targeting ITRs Universal assay
- 3. Bias introduced from the standard curve amplification of dsDNA vs ssDNA \rightarrow Over-estimation of viral titre
- ✓ Absolute quantification no standard curve required → Improved precision
- 4. Steps above → High inter/intra-assay variability
 - ✓ Robust and accurate method for in-process control and product characterisation

ddPCR vg titre assay

Primer/probe set targeting ITR2 sequence – matching against internal positive control primer/probe set

ddPCR and Commercial qPCR method comparability

Selectivity and Comparability

ddPCR results within 95% CI

Summary

Fully functional assay offering

- 1. ITR sequence detection → Applicable to any AAV2 and AAV2 derived serotypes
- 2. In-house designed primers and extraction method
- 3. Higher sensitivity \rightarrow Suitable for in-process sample measurement
- 4. Increased precision and reproducibility over commercial and current available qPCR titration methods

To overcome ddPCR limited market coverage, CGT has adapted in-house primers/probe set to a qPCR platform

Adapted in-house qPCR method

Intra-assay CV < 10%

Inter-assay CV = 22%

Inter assay variability greater than seen on a ddPCR platform, but still meeting acceptance criteria

Quantity/purity total particle measure Empty to full ratio

Quantity/purity – total particle measure/ Empty to full ratio

ELISA – Commercial kit

Evaluation of 5 commercial kits

Inter assay CV < 8%

Intra assay CV <5%

	qPCR	ddPCR	
% full particles	13.69%		6.72%

Limitations

- 1. Expensive
- 2. Labour intensive
- 3. Time consuming
- 4. Antibody specific/serotype dependent

Dynamic Light Scattering technology

Quantity – total particle number, alternative methods

MADLS and ELISA method comparability

- 1. Expensive
 - ✓ Long term cost efficient
- 2. Labour intensive
- ✓ No sample prep required
- 3. Time consuming
- ✓ Fast, readings in under a minute
- 4. Antibody specific/serotype dependent
 - ✓ Physical measure of particle content, universal serotype measure
 - Measures impurities
 - Measures aggregates

Case study

Overview of downstream developmental scope

Cell Lysis Experiment – Study Design & Workflow

AAV titre and purity check

Total particle measure - MADLS

CGT analytical capabilities and vision

CGT analytical capabilities

CGT vision

CGT vision

Now

Future

CGT Strategy

Acknowledgements

Julie Kerby

Damian Marshall

Mike Delahaye

Gregory Berger

Nicole Nicolas

Anusha Seneviratne

Nishanthi Weeratunge

Florian Leseigneur

Quentin Bazot

Elena Sokolskaja

We work with Innovate UK

