

Keeping the goal in mind

Indication	Therapeutic cell type	Annual Incidence in UK	Predicted cell/dose	Annual cell requirement
Myocardial infarction	Cardiomyocytes	25,000 deaths	1-2 X10 ⁹	7 x10 ¹³

Reproducible
Scalable
Controlled
Affordable

Process changes ⇔ Comparable product quality

Define QTPP to guide development

Thaw & Primitive Streak → Cardiac Mesoderm → Specification & Maturation

Product characterisation

- Physiochemical properties
- Safety
- Purity
- · Process- and product-related impurities
- Potency (a measure of biological activity of the product in the context of the proposed MoA)
- Viability
- Sterility
- Quantity
- **Quality Attribute**: A molecular or product characteristic that is selected for its ability to help indicate the quality of the product. Quality attributes define identity, purity, potency, and stability of the product, and safety with respect to adventitious agents.
- **Comparable:** A conclusion that products have highly similar quality attributes before and after manufacturing process changes and that no adverse impact on the safety or efficacy, including immunogenicity, of the drug product occurred. This conclusion can be based on an analysis of product quality attributes. In some cases, non-clinical or clinical data might contribute to the conclusion.

Culture system and scale: technology selection

Culture system

Carriers (3D)

STR (3D)

Packed-bed (2D)

Rocking-agitation (3D)

Hollow-fiber (2D)

Rocking-agitation modified (3D)

Mag-drive (2D)

Intensification strategies

Example of PSC scale up – 2D

iPSC production Quantum® Bioreactor

By predicting cell numbers based on a metabolite read-out it was possible to automate and up scale the iPSC expansion in the Quantum bioreactor with efficient usage of medium.

Example of PSC scale up - 3D

Parameters of vessel design and fluid-dynamics were used to scale up the agitation rate for the aggregate-based culture of ESCs in from 15 mL (ambr15) to 3-L (CellReady) STRs.

Discrepancies & communalities between BHF protocols

Starting material

- > Several hiPSC/hESC lines
- mTeSR; E8; MEF media; chemically defined media

Passaging

- > 1:12 1:20/ 65-85%/ 4-5 days
- > 1:8 1:12/ 65-85%/ 3-4 days
- > 1:6 1:10/90%/4-5 days
- ➤ When "confluent"
- > EDTA; TrypLE; Collagenase

hPSC characterisation

- Sox2; Lin 28, OCT4; TRA1-60; NANOG; SSEA4 expression
- Karyotyping
- Flow cytometry, qPCR immunocytochemistry colony morphology

- Open manual processing
- Quality assessments based on operator judgements
- Medium exchange regime

Methods for hPSC cardiac differentiation

Monolayer on Matrigel	2D	ActA, BMP4	RPMI B27	RPMI B27	30% CMs	Laflamme et al., 2007
Colonies on MEFs	3D	ActA, BMP4, FGF2	VEGFA, DKK1	VEGFA, FGF2	50% CMs	Yang et al., 2008
Colonies on MEFs	3D	ActA, BMP4, FGF2	VEGFA, DKK1, SB431542, dorsomorphin	VEGFA, FGF2	75% CMs	Kattman et al., 2011
Monolayer on Matrigel	2D	CHIR99021	IWP2	RPMI, AscAcid, Albumin	98% CMs	Lian et al., 2012
Monolayer on Synthemax	2D	CHIR99021	Wnt-C59	RPMI B27 +ins	95% CMs	Burridge <i>et al.</i> , 2014
Monolayer on Matrigel	2D	CHIR99021, ActA, BMP4	XAV-939	RPMI B27 +ins	90% CMs	Palpant et al., 2016

Current protocols at the BHF centres

Pluripotent culture Mesoderm induction factors

Cardiac specification factors Cardiac differentiation factors

Cardiomyocyte purification

Cardiomyocyte maturation

Monolayer on Glucose
Gelatin RPMI B27 Starvation
-ins >95% CMs

CHIR99021 RPMI B27
+ins

Monolayer on KY0211, >95% CMs Matrigel XAV039, RPMI B27

ActA, BMP4, -ins Chem Def

Monolayer on IWR-1, 85-95% CMs
Geltrex Retinoic acid

ActA, BMP4, Card Diff FGF2 Med

Monolayer on Vitronectin

Other discrepancies between BHF protocols

Cell density

- > 20-90, 000 cells/cm²
- > 50-100, 000 cells/cm²
- ➤ 85-95% confluency
- > >90% confluency

Protocol duration

- > >7 days
- > 12-25 days
- > 15-30 days

PSC-CM characterisation

- Alpha-actinin/troponin-T expression
- > Calcium transients
- Immunocytochemistry
- > Flow cytometry

Opportunities for standardisation

Opportunities for standardisation

PSC expansion

Well defined substrate e.g. Synthemax or Laminins; GMP hPSC line

Differentiation protocol

Combine Wnt/ ActA BMP4 pathways; Agree on small molecules of choice and protocol length

Reagents

Consider defined and GMP compliant reagents as early on as possible

Cell number

Automated counting when passaging; algorithm for confluency determination

Analytics

Identify
Critical
Quality
Attributes

drug product; contaminants

Early evaluation
of process
automation,
closure, and
scaling

Characterisation

Define thresholds:

perform regular QC;

define predictors of

success

Choose methods suitable for GMP e.g. flow cytometry, qPCR